International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Call for Papers | Fully Refereed | Open Access | Double Blind Peer Reviewed

ISSN: 2319-7064

Downloads: 109 | Views: 151

Research Paper | Computer Science & Engineering | India | Volume 3 Issue 9, September 2014

Improvement in Apriori Algorithm with New Parameters

Reeti Trikha | Jasmeet Singh

Abstract: Data Mining or Knowledge Discovery in Databsaes is an advanced approach which refers to the extraction of previously unknown and useful information from large databases. Association Rule Mining is an important technique of data mining. This technique emphasis on finding interesting relationships. For understanding these relationships, a technique called Market Basket Analysis has been introduced in Data Mining. This helps in understanding the customer behaviour more easily so that frequent patterns can be generated. Apriori algorithm is used in association rule mining for generating frequent patterns. But it generates patterns only on the basis of presence and absence of items, resulting into lack of efficient results. So new parameters have been included in this paper which will be helpful in giving maximum profit to the business organizations. This paper shows that how addition of new parameters improve the efficiency of Apriori algorithm by comparing the results of improved algorithm with the results of traditional Apriori algorithm.

Keywords: Data Mining, KDD, Association Rule Mining, Apriori, Market Basket Analysis, Support, Confidence, Profit, Weight, Q-factor, PW-Factor

Edition: Volume 3 Issue 9, September 2014,

Pages: 1395 - 1399

How to Download this Article?

Type Your Valid Email Address below to Receive the Article PDF Link

Verification Code will appear in 2 Seconds ... Wait