International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Call for Papers | Fully Refereed | Open Access | Double Blind Peer Reviewed

ISSN: 2319-7064


Downloads: 120 | Views: 316 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1

Research Paper | Mathematics | Kenya | Volume 3 Issue 7, July 2014 | Popularity: 7 / 10


     

Conditional Maximum Likelihood Estimation for Logit Panel Models with Non-Responses

Opeyo P.O., Olubusoye O.E., Leo O.Odongo


Abstract: In analyzing most survey data in which the dependent variable is a binary choice variable taking values 1 or 0 for success or failure respectively it is feasible to consider the conditional probabilities of the dependent variable. Under strict exogeneity, this conditional probability equals the expected value of the dependent variable. This treatment calls for a nonlinear function which will ensure that the conditional probability lies between 0 and 1 and such functions yield the probit model and the logit model. For panel data econometrics, such nonlinear panel models require conditioning the probabilities on the minimum sufficient statistic for the fixed effects so as to curb the incidental parameter problem. Solving the joint p. d. f by maximum likelihood method yields consistent conditional maximum likelihood estimate for the model parameters in cases when the data set is complete (or balanced) with no cases of missing observations. In cases of missing observations in the covariates, researchers employ several imputation techniques are used to make the data complete. Imputation, however, brings about a bias in the covariate and this bias is propagated to the parameter estimates. This study considers the susceptibility of nonlinear logit panel data model with single fixed effects to imputation by investigating the bias arising from various imputation methods. The study developed a conditional maximum likelihood estimator for nonlinear binary choice logit panel model in the presence of missing observations. A Monte Carlo simulation was designed to determine the magnitude of bias arising from common imputation techniques and recommend better techniques to be used in order to improve model performance in the presence of missing observations in econometrics panel data analysis. The simulation results show that the conditional logit estimator presented in this paper is less biased than the unconditional logit estimators without sacrificing on the precision.


Keywords: Panel Data, Binary choice, Imputation, Monte Carlo, Bias, Conditional Maximum Likelihood


Edition: Volume 3 Issue 7, July 2014


Pages: 2242 - 2254



Make Sure to Disable the Pop-Up Blocker of Web Browser




Text copied to Clipboard!
Opeyo P.O., Olubusoye O.E., Leo O.Odongo, "Conditional Maximum Likelihood Estimation for Logit Panel Models with Non-Responses", International Journal of Science and Research (IJSR), Volume 3 Issue 7, July 2014, pp. 2242-2254, https://www.ijsr.net/getabstract.php?paperid=201583



Similar Articles

Downloads: 40

Research Paper, Mathematics, Indonesia, Volume 2 Issue 2, February 2013

Pages: 138 - 143

Hierarchical Bayes Small Area Estimation for Gender Parity Index in Education: Case Study East Java Province

Rifdatun Ni'mah, Nur Iriawan

Share this Article

Downloads: 108

Research Paper, Mathematics, Iraq, Volume 6 Issue 3, March 2017

Pages: 1380 - 1386

Comparison Four Methods for Estimating the Fatigue Life Distribution Parameters through Simulation

Abbas Najim Salman, Taha Anwar Taha

Share this Article

Downloads: 128

Research Paper, Mathematics, Iraq, Volume 6 Issue 8, August 2017

Pages: 1163 - 1167

On Reliability Estimation for the Rayleigh Distribution Based on Monte Carlo Simulation

A. Lec. Taha Anwar Taha

Share this Article

Downloads: 131

Research Paper, Mathematics, India, Volume 3 Issue 7, July 2014

Pages: 1519 - 1521

A Study on Multi Server Queuing Simulation

S. Shanmugasundaram, S. Punitha

Share this Article

Downloads: 139 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1

Research Paper, Mathematics, India, Volume 5 Issue 1, January 2016

Pages: 273 - 279

Maximizing System Reliability of a Four Stage RAP with Two Chance Constraints Having Stochastic Reliability Components

Sanat Kumar Mahato

Share this Article



Top