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Abstract: In analyzing most survey data in which the dependent variable is a binary choice variable taking values 1 or 0 for success or 
failure respectively it is feasible to consider the conditional probabilities of the dependent variable. Under strict exogeneity, this 
conditional probability equals the expected value of the dependent variable. This treatment calls for a nonlinear function which will 
ensure that the conditional probability lies between 0 and 1 and such functions yield the probit model and the logit model. For panel data 
econometrics, such nonlinear panel models require conditioning the probabilities on the minimum sufficient statistic for the fixed effects 
so as to curb the incidental parameter problem. Solving the joint p.d.f by maximum likelihood method yields consistent ‘conditional 
maximum likelihood estimate’ for the model parameters in cases when the data set is complete (or balanced) with no cases of missing 
observations. In cases of missing observations in the covariates, researchers employ several imputation techniques are used to make the 
data complete. Imputation, however, brings about a bias in the covariate and this bias is propagated to the parameter estimates. This 
study considers the susceptibility of nonlinear logit panel data model with single fixed effects to imputation by investigating the bias 
arising from various imputation methods. The study developed a conditional maximum likelihood estimator for nonlinear binary choice 
logit panel model in the presence of missing observations. A Monte Carlo simulation was designed to determine the magnitude of bias 
arising from common imputation techniques and recommend better techniques to be used in order to improve model performance in the 
presence of missing observations in econometrics panel data analysis. The simulation results show that the conditional logit estimator 
presented in this paper is less biased than the unconditional logit estimators without sacrificing on the precision. 
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1. Introduction 
 
1.1 Background Introduction 
 
A general panel data model is of the form  

y�� = ���� + c� + γ� + u��, i =  1, . . . , N;  t =  1, . . . , T (1) 
 
Where the parameters c� and γ� represent the individual 
specific and time specific effects respectively. Assuming only 
the individual specific effects c�then the equation (1) takes 
the form  
 

y�� = ���� + c� + u��                               (2) 
 
The relationship between c� and u��determines whether the 
relation (2) is treated as fixed or random effects model. This 
is to say that if c�is correlated with ���then the model has only 
u��as the stochastic part and c� is treated as fixed (non-
random). As such, we have a fixed effect panel model. On the 
other hand, it is a random effect model, if it becomes part of 
the stochastic part of (2) so that 
 

y�� = ���� + v��                                 (3) 
 
Where v�� = c� + u��. Equation (3) is the random effect 
model. 
 
In estimating panel model parameters, therefore, there exist 
generally two categories of models, fixed effects models (FE) 
and random effects (RE) models. With the former, one does 
not estimate the effects of the variables that are individual 

specific and time invariant but rather controls for them or 
‘partials them out’. The later (RE models) estimate the effects 
of these time invariant variables. These estimates may be 
biased since other omitted variables are uncontrolled for. 
 
If the dependent variable y�� is continuous then the 
parameters in panel data model can be estimated. The 
approaches used so far in estimating panel models with fixed 
effects aim at controlling for these effects by eliminating the 
presence of these effects from the model and estimate the 
coefficients of the regressors. If on the other hand the 
dependent variable is categorical, then specific nonlinear 
functions that preserve the structure of the dependent variable 
are considered. Such nonlinear functions include among 
others, the logit, probit and poisson models. Among the 
approaches explored to estimate fixed effects models include:  
 
 Demeaning variables- where the within subject means 

(averages) are subtracted from each observed value of the 
variables thereby eliminating the constant nuisance factor 
for each subject. This approach is known to work best for 
linear regression models but fails in logistic regression.  

 Unconditional maximum likelihood - here dummy 
variables are created for each subject (except one) and 
included in the model i.e. N-1 dummies introduced. 
Estimating linear regressions by unconditional maximum 
likelihood produces consistent estimates with the 
demeaning variables method but for logistic regressions, 
these estimates are biased.  

 Conditional maximum likelihood estimation – this is the 
most preferred method for logistic regressions. Here, the 
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conditional maximum likelihood ‘conditions’ the (fixed 
effects) out of the likelihood function [7]. This is done by 
conditioning the likelihood function on the total number of 
events observed for each subject.  

 
The concepts of conditional maximum likelihood for 
nonlinear panel models has been tackled in several studies 
from cases with only a single fixed effect to multiple fixed 
effects. For static linear models, consistent estimates for the 
parameters are obtained by simply differencing out the fixed 
effects. For nonlinear panel models, however, there exist the 
well-known incidental parameter problem realized by 
Neyman and Scott [24] in which the number of fixed effects 
increases with increasing sample size. Incidental parameters 
are such parameters whose dimension increases with sample 
size. For example, as N approaches infinity, the number of 
fixed effects increases and so they are incidental parameters. 
Such parameters cannot be consistently estimated [5]. Other 
attempts to solve the incidental parameter problem succeeded 
for the Poisson and negative binomial models with single 
fixed effects [15]. Manski [21] generalized the logit model 
and developed a conditional maximum score estimation of 
binary response models. 
 
Charbonneau [9] developed the works of Hausman, Hall and 
Griliches [15] by considering the adaptability of nonlinear 
panel models to multiple fixed effects. From Monte Carlo 
simulations [9], the conditional ML logit estimator proved 
less biased than other logit estimators. As much parameter 
estimation of panel models is possible, complications arise 
when the panels are unbalanced. Such unbalancedness in 
panel data is brought about by delayed entry, early exit or 
intermittent non-response from a study unit. For the former 
two causes of unbalancedness, each individual is observed 
T�times and analysis of the panel models is still feasible. 
However, in cases of intermittent non-responses a need to 
establish the nature and cause of the non-response suffices. 
Approaches suggested in literature on how to handle missing 
observations become valid in such cases. Moreover, to avoid 
serious inferential problems which may arise from sample 
nonresponses thereby misdirecting policy actions, much 
attention need to be given to the problem of non-response 
bias both at stages of data collection and data analysis. This 
study therefore examines the impact of missing data to the 
conditional maximum likelihood estimation procedures of 
nonlinear panel models for discrete choice dependent 
variable. We derive a conditional maximum likelihood 
estimator with reduced bias for nonlinear binary response 
logit panel models in the presence of imputed missing 
observations. Using simulations with various types of 
missing data to evaluate the magnitude of bias arising from 
using common imputation techniques to estimate missing 
observations, we shall attempt to recommend the best 
techniques to be used in order to improve the treatment of 
missing data. 
 
2. The Review of Literature 
 
Panel data econometrics has greatly developed since the 
handbook chapter by Chamberlain [8]. Panel data methods so 
far studied are necessary for understanding individual 
specific behaviors. The analysis of two way models, both 
fixed and random effects, has been well worked out in the 

linear case in studies by Baltagi[4], [5]. Greene [12] shows 
that individual specific dummy variable coefficients can be 
estimated using group specific averages of residuals. By least 
squares dummy variables (LSDV) approach, the slope 
parameters in linear models can also be estimated using 
simple first differences. 
 
Although for linear cases, regression using mean deviations 
sweeps out the fixed effects, there are a few analogous cases 
of nonlinear models that have been identified in literature. 
Among them are the binomial logit model [12], Poisson and 
negative binomial regressions [15] and exponential 
regression model [13], [23]. Differently put, when studying 
static linear models, fixed effects do not generally cause any 
problem, since they can easily be differenced out to allow 
consistent estimation of the relevant parameters. However, 
when considering nonlinear panel data models, the incidental 
parameter problem identified by Neyman and Scott [24], 
motivated a rich literature on the estimation of single fixed 
effects nonlinear panel data models. Rasch considered the 
first model in the literature - the logit model [26], [27]. Later, 
Manski[21] generalized this to develop a conditional 
maximum score estimator for binary response models that 
remains consistent under weak assumptions on the 
distribution of the errors. On the same breath, Hausman, Hall 
and Griliches used the relationship between the Poisson and 
multinomial distribution to solve the incidental parameter 
problem in the Poisson regression model (and Negative 
Binomial) in the presence of a single fixed effect [15]. Like 
in the logit case, this results in a conditional likelihood 
approach that can be used to consistently estimate the 
parameters of interest. 
 
With a more general approach to the problem, Hahn and 
Newey [14] show that when N and T grow at the same rate, 
the fixed effects estimator is asymptotically biased and the 
asymptotic confidence intervals are wrong. They suggest two 
bias correction methods (the panel Jackknife and the analytic 
bias correction). 
 
Most of these models are however considered majorly for 
cases with balanced panels in which no missing data due to 
nonresponses exist. The problem of non-response is normally 
ignorable for a regression model of interest if inference can 
be made about the model without caring about the process 
that causes the missing data. Certain conditions that allow 
one to neglect the selection process are given by Rubin for 
cross sectional case [19], [30]. Specifically, these authors 
introduced the concepts of missing at random (MAR), 
missing not at random (MNAR) and missing completely at 
random (MCAR). Nikos Tsikriktis [25] gave detailed 
overviews on various techniques of dealing with missing data 
which he categorized into three: deletion procedures, 
replacement procedures and model based procedures. 
 
Griliches and Hausman [15] note that a frequent drawback of 
using panel data is the insignificant results produced by the 
‘within’ approach to their analysis, which are often blamed 
on the errors of measurement magnified by this approach. 
They provide a variety of errors-in-variables models for panel 
data, but for a continuous dependent variable. When the 
dependent variable is discrete, the problem changes. 
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Stefanski and Carroll (1985) study errors in variables in the 
logistic regression model and suggest a bias-adjusted 
estimator. Kao and Schnell (1987) extend the results to panel 
data and show that, with errors in variables, the conditional 
maximum-likelihood estimator for a binary regression model 
for a panel is asymptotically biased. They also introduce a 
bias-corrected estimator, which is examined asymptotically 
when the measurement error is small but non-negligible. 
 
Individuals present in the data base may not be observed 
during the same period (unbalanced panels) or there may be 
‘holes’ in the observation panel leading to incomplete panels. 
In literature, there exist two possibilities of estimating an 
econometric model with these kinds of incomplete panels. 
We can either use appropriate (unbalanced) estimation 
methods [3], [6], which are in general quite complex or drop 
from the panel those individuals for which the observations 
are not complete and carry out the estimation on a balanced 
and complete sub-panel of the original one.  
 
Verbeek-Nijman (1990) show that if we have unbalanced or 
incomplete panels and we use the usual estimators of panel 
models based on a balanced and complete sub-panel, these 
are (asymptotically) unbiased and consistent (except the 
OLS) under quite general and reasonable conditions in the 
case when the observations are missing at random (so there is 
no selectivity bias present).  
 
From the available literature, it is evinced that not much 
study on the panel data econometrics for the logit model has 
explored the concepts of nonresponse bias. As much as 
imputation techniques exist that can make datasets complete 
for ease of parameter estimation, the magnitudes of the biases 
induced into the parameter estimates are not substantively 
quantified. This means that there does not exist concrete 
procedures that can be used to pick on the best imputation 
technique in the estimation of panel models. A study in this 
line will therefore add on to the existing theoretical 
knowledge. The available literature thus iterates that 
conditional maximum likelihood estimates are consistent 
even for the logit model although with smaller bias compared 
to the unconditional MLE. Imputation also biases the 
covariates’ averages. A study that combines these two biases, 
due to logit regression and imputation, is worthwhile.  
 
3. Materials and Methods 
 
3.1 Binary Choice Panel Models 
 
3.1.1 Binary Choice Variable 
 
In many economic studies, the dependent variable is 
categorical indicating a success or a failure of an event. Such 
dependent variable is normally represented by a binary 
choice variable ��� = 1 if the event happens and 0 if it does 
not happen for individual � at time �. In fact if ��� is the 
probability of success for individual � at time �, then 
�(���) = 1 × ��� + 0 × (1 − ���) = ��� and this is usually 
modeled as a function of some explanatory variables 
 

��� = ��(��� = 1) = �(���|���, ��) = �(���� + ��) 
 

We first consider the linear regression model ��� = ���� +
�� + ��� (4) where y is a binary response variable, ���is a 
1xK vector of observed explanatory variables (including a 
constant), β is a K x1 vector of parameters, ��is an 
unobserved time invariant individual effect, and ���  is a zero-
mean residual uncorrelated with all the terms on the right-
hand side. Here, we assume strict exogeneity holds i.e. the 
residual ���is uncorrelated with all x-variables over the entire 
time period spanned by the panel.  
 
Since the dependent variable is binary, it is natural to 
interpret the expected value of y as a probability. Indeed, 
under random sampling, the unconditional probability that y 
equals one is equal to the unconditional expected value of y, 
 
i.e. E (y) = Pr (y = 1). As such, ��(��� = 1|���, ��) =
�(��� = 1|���, ��; �) 
 
So if the model (4) above is correctly specified, we have 
 

 
��(��� = 1|���, ��) = ���� + ��

��(��� = 0|���, ��) = 1 − (���� + ��)
�               (5)  

 
Equation (5) is a binary response model. In this particular 
model the probability of success (i.e. y = 1) is a linear 
function of the explanatory variables in the vector x. Hence 
this is called a linear probability model (LPM) which can be 
used to estimate the parameters, such as OLS or the within 
estimator. This LPM however has limitations when used to 
estimate the parameters for a discrete choice variable. One 
undesirable property of the LPM, among others, is that we 
can get predicted "probabilities" either less than zero or 
greater than one. Of course a probability by definition falls 
within the (0, 1) interval, so predictions outside this range are 
meaningless and somewhat embarrassing.  
 
To address the problems of LPM, a nonlinear binary response 
model is used where we write our nonlinear binary response 
model as 
 

��(��� = 1|���, ��) = �(���� + ��)               (6) 
 
with G being a function taking on values strictly between 
zero and one: i.e.0 < G(z) < 1, for all real numbers z. The fact 
that0 < �(���� + ��) < 1) ensures that the estimated 
response probabilities are strictly between zero and one, 
which thus addresses the main limitation of using LPM. G is 
a cumulative density function (cdf), monotonically increasing 
in the index z (i.e. ���� + ��), with 
 

 
��(��� = 1|���, ��) → 1 �� ���� + �� → ∞

��(��� = 1|���, ��) → 0 �� ���� + �� → −∞ 
� (7)  

 
Thus G is a nonlinear function, and hence we cannot use a 
linear regression model for estimation. Various non-linear 
functions for G have been suggested in the literature and the 
most common ones are the logistic distribution, yielding the 
logit model, and the standard normal distribution, yielding 
the probit model. In the logit model, G takes the form,  
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�(���� + ��) =
��������

1 + ��������
                           (8) 

 
which is between zero and one for all values of ����. This is 
the cumulative distribution function (CDF) for a logistic 
variable. 
 
3.3.2 Assumptions of the Logit Model 
 
In Logit estimation, there does not exist many of the key 
assumptions of linear regression and general linear models 
that are based on ordinary least squares algorithms – 
particularly regarding linearity, normality, homoscedasticity, 
and measurement level. As such, logit regression has certain 
unique characteristics to be mentioned: (1) it does not need a 
linear relationship between the dependent and independent 
variables. Logistic regression can handle all sorts of 
relationships, because it applies a non-linear log 
transformation to the predicted odds ratio,(2) the independent 
variables do not need to be multivariate normal – although 
multivariate normality yields a more stable solution. Also the 
error terms (the residuals) do not need to be multivariate 
normally distributed, (3) homoscedasticity is not needed, (4) 
it can handle ordinal and nominal data as independent 
variables. The independent variables do not need to be metric 
(interval or ratio scaled). 
 
3.4 Estimation of Logit Model 
 
3.4.1 Incidental parameter Problem 
 
For Panel data, the presence of individual effect complicates 
the parameter estimation significantly. Consider the fixed 
effects panel data model 
  
��� = ���� + �� + ���with ��(��� = 1) = �(���� + ��). 
 
In this case ��  and �are unknown parameters to be estimated 
and as � → ∞ for fixed �, the number of parameters�� 
increases with � . As such �� cannot be consistently 
estimated for fixed �. This is known as the incidental 
parameter problem in statistics, first discussed by Neyman 
and Scott (1948) and later reviewed by Lancaster (2000). 
 
For linear panel data regression model, when � is fixed, only 
� can be estimated consistently by first getting rid of �� using 
the within transformation. This is possible for the linear case 
because the MLE of � and �� are asymptotically independent 
(Hsiao 2003). For qualitative binary choice model with fixed 
�, this is not possible as demonstrated by Chambelain (1980). 
 
Hsiao (2003) simply illustrates how the inconsistency of the 
MLE of ��is transmitted into inconsistency for �����.This is 
done in the context of a logit model with one regressor xit that 
is observed over two periods, with xi1= 0 and xi2= 1where as 
� → ∞ with � = 2, ��������� = 2�. Greene (2004a) shows 
that despite the large number of incidental parameters, one 
can still force maximum likelihood estimation for the fixed 
effects model by including a large number of dummy 
variables. Using Monte Carlo experiments, he shows that the 
fixed effects MLE is biased even when �is large. For N = 
1000, T = 2 and 200 replications, this bias is 100%, 

confirming the results derived by Hsiao (2003). However, 
this bias improves as T increases. For example, when N = 
1000 and T = 10 this bias is 16% and when N = 1000 and T = 
20 this bias is 6.9%. 
 
3.4.2 The Unconditional likelihood function 
 
The logit model is estimated by means of Maximum 
Likelihood (ML). That is, the ML estimate of β is the 
particular vector ����that gives the greatest likelihood of 
observing the outcomes in the sample ���, ��, … � conditional 
on the explanatory variables x. 
 
By assumption, the probability of observing ���= 1 is 
G(���� + ��) while the probability of observing ���= 0 is 
1 − �(���� + ��) : It follows that the probability of 
observing the entire sample is 
 

�(�|�; �) = � �(���� + ��)
�∈�

��1 − �(���� + ��)�
�∈�

(9) 

 
Where l refers to the observations for which y = 1 and m to 
the observations for which y = 0. 
 
We can rewrite this as 
 
�(�|�; �) = ∏ (�(���� + ��))���

��� �1 − �(���� + ��)�����         
(10) 

because when y = 1 we get �(���� + ��) and when y = 0 we 
get �1 − �(���� + ��)�. 
 
The log likelihood for the sample is 
 

���(�|�; �) = �������(���� + ��)
�

���
+ (1 − ��)���1 − �(���� + ��)��  

(11) 
The MLE of β maximizes this log likelihood function. 
 
3.4.3 Conditional Likelihood function for Logit Panel 
Model 
 
If G is the logistic CDF then we obtain the logit log 
likelihood: 
 

���(�|�; �) = � ����� �
��������

1 + ��������
�

�

���

+ (1 − ��)�� �
1

1 + ��������
��  

(12) 
 
Estimating the parameters in this model is not easy as it is 
specified since the unobserved individual characteristics, ��  
are also not known. In linear models, it is easy to eliminate ��  
by means of first differencing or using within transformation. 
If we attempt to estimate �� directly by adding N-1 individual 
dummy variables to the logit specification, this will result in 
severely biased and inconsistent estimates of β unless T is 
large due to the incidental parameters problem.  
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One important advantage of the logit model over the probit 
model is that it is possible to obtain a consistent estimator of 
β without making any assumptions about how �� is related to 
��� (however, strict exogeneity must hold). 
 
This is possible, because the logit functional form enables us 
to eliminate ��from the estimating equation, once we 
condition on the "minimum sufficient statistic" for ��. As 
such we obtain the conditional likelihood function whose 
parameters are estimated. For T = 2, the conditional 
probabilities:  
 
��(��� = 0, ��� = 1|���, ���, ��, ��� + ��� = 1) (13�) and  
 
��(��� = 1, ��� = 0|���, ���, ��, ��� + ��� = 1) (13�) are 
expressed as; 
 

��(��� = 0, ��� = 1|���, ���, ��� + ��� = 1)

=
�(�������)�

1 + �(�������)�  (16) 
 

��(��� = 1, ��� = 0|���, ���, ��� + ��� = 1)

=
1

1 + �(�������)�  (17) 
 
It also follows that probabilities (16) and (17) are conditional 
on ��� + ��� = 1and are independent of �� . 
 
The distribution function is thus given as 
  

��(���, ���|���, ���, ��� + ��� = 1) =

�
�

�
1 �� (���, ���) = (0,0)��(1,1)

�
���(�������)�  �� (���, ���) = (1,0)

�(�������)�

���(�������)�  �� (���, ���) = (0,1)

   (18) 

 
Hence, by maximizing the following conditional log 
likelihood function 
 

��� = � ������� �
�(�������)�

1 + �(�������)��
�

���

+ ������ �
1

1 + �(�������)��� (19) 

 
we obtain consistent estimates of β, regardless of whether �� 
and ��� are correlated. 
 
The trick is thus to condition the likelihood on the outcome 
series (���, ���), and in the more general case. For example, if 
T = 3, we can condition on ∑ ��� = 1� , with possible 
sequences (1,0,0) , (0,1,0) , (0,0,1) , or on ∑ ��� = 2�  with 
possible sequences (1,1,0) , (0,1,1) , (1,0,1). The general 
conditional probability of the response variable 
(���, ���, … . , ���) given ∑ ���� is 
 

�� ����, ���, … . , ������, � ���
�

� =
�(∑ ������� �)

∑ �(∑ ������� �)
�∈��

 (20) 

 
Where 
�� = �(���, ���, … , ���)|��� = 0,1 ��� ∑ ���� = ∑ ���� � 

4. Methodology and Data Analysis 
 
4.1 Parameter Estimation 
 
Consider the logit panel data model given 

�(��� = �|���, �, ��) = ��������

����������
 (22) where ���is the vector 

of covariates. In the presence of missing observations in the 
vector ���, we express it as a sum of two vectors ����and 
����for the sample-present covariate values and the missing 
covariate values respectively. Therefore, the equations (16) 
and (17) are expressible as 
 

��(��� = 0, ��� = 1|���, ���, ��� + ��� = 1)

=
���������������������������

1 + ���������������������������
 (27) 

��(��� = 1, ��� = 0|���, ���, ��� + ��� = 1)

=
1

1 + ���������������������������
 (28) 

 
Equations (27) and (28) can as well be expressed as  

��(��� = 0, ��� = 1|���, ���, ��� + ��� = 1)

=
�∆����

��∆���� + �∆���� (29) 

 
��(��� = 1, ��� = 0|���, ���, ��� + ��� = 1)

=
��∆����

��∆���� + �∆����  (30) 

 
where∆��� = ����� − �����and ∆��� = ����� − �����. 
 
The conditional log likelihood function can thus be obtained 
using equations (29) and (30) as 
 

��� = � ������� �
�∆����

��∆���� + �∆�����
�

���

+ ������ �
��∆����

��∆���� + �∆������ (31) 

 
4.2 Newton-Raphson Algorithm 
 
Maximization of equation (31) can be performed by the 
Newton-Raphson algorithm. Starting from an initial estimate 
�(�), the algorithm consists of iterating the estimate at step ℎ 
as 
 

�(�) = �(���) + ���(���)���
���(���)� (��) 

 
Where, �(�) = ����

�� is the score vector and �(�) = − �����
�����is 

the observed information matrix given respectively as 
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�(�) = ����
�� � � ����� �∆�′��

�

���

− �
−∆��

����∆���� + ∆�′���∆����

��∆���� + �∆���� ��

− ���� �∆���

+ �
−∆��

����∆���� + ∆�′���∆����

��∆���� + �∆���� ��� (32) 

 

�(�) = −�����
������ � ����� ��

∆���
���∆���� + ∆��

��
��∆����

��∆���� + �∆���� �
�
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4.3 Monte Carlo Simulation 
 
In this section, we present Monte Carlo evidence to support 
the conditional ML fixed effect estimator developed above. 
For this, we focus on the logit estimator given by the 
maximization of equation (31). The simulations will compare 
that estimator to the unconditional logit estimator which 
estimates all the fixed effects by putting in dummies. The 
unconditional logit estimator, however, is subject to the 
incidental parameter problem. 
 
To account for different possible features of the data, this 
comparison will be made for two sets of data, one complete 
(balanced) and the other incomplete (unbalanced) due to 
intermittent nonresponses. The latter data set is balanced by 
imputing the missing observations and substituting the 
imputed vector ����into the conditional log likelihood 
function (31) where the imputation methods described in 
section 3.7 are employed. Both panel sets are applied to the 
estimation of the following model:  
 

��� = 1(���� + �� + ��� ≥ 0) � = 1,2, … , � � = 1,2 where ��� 
is a vector of five explanatory variables drawn from uniform, 
binomial and normal distributions and the error term ��� is 
drawn from a normal distribution. The variables’ descriptions 
areas in table 1. All other parameters, beta1 to beta5, of the 
model necessary to calculate the dependent variable y were 
fixed as β1=1, β2=-1, β3=1, β4=1 and β5=1. Having 
determined these variables, the dependent variable, y, was 
calculated from the relation ��� = 1��� + ����

��+����
�� +

����
�� + ����

�� + ����
���� + ��� ≥ 0� � = 1,2, … , � � =

1,2, … , � where ���  is a logistic variable given by ��� =
�� � ���

�����
� with ��� being a standard normal random variable. 

The fixed effects ��are obtained as functions of x1 and t by 
the relation �� = √� ∑ ��

�
+ ��with �� being a standard normal 

random variable as well. 
 

 
Table 1: Description of variables 

Variable Type  
x1 continuous N~(0, 1) 
x2 continuous U~ (0, 1) 
x3 continuous N~ (0.5, 0.5) 
x4 discrete B~(nT, 2, 0.65) 
x5 discrete binomial 

 
Three different sample sizes were used for both sets of data 
estimated i.e. n = 50, 100 and 250.In addition, for each 
sample size; we vary the proportion of missingness from 10% 
to 30% by randomly deleting the desired proportion of 
observations from the data set and imputing them back 
through mean imputation, last value carried forward 
imputation and median imputation. Whenever fixed effects 
are estimated, the coefficients are truncated in order to ensure 
convergence. The summarized results for 1000 replications 
are given in Tables 2 to 7. For both estimators (unconditional 
logit and conditional logit) considered, we report the median 
bias, the median absolute deviation (MAD), the mean bias, 
and the root mean squared error (RMSE) for all the four 
coefficient estimates. 
 

Table 2: Sample size n= 50, T=2, percentage of missingness=10%
 

Model Balanced/Unbalanced Parameter Median Bias MAD Mean Bias RMSE 

Logit (With 
FE) 

 
 

Balanced 

�� -0.09098714 0.2961396 -0.1288857 0.4743939 
�� 0.17175351 0.7306155 0.1752378 1.1298963 
�� -0.06030911 0.4217924 -0.1165433 0.6785884 
�� -0.07580644 0.3290792 -0.1192750 0.5285040 
�� -0.13644092 0.5041175 -0.2033034 1.1341030 

 

 
 

Unbalanced 
(But imputed) 

Mean 
Imputation 

�� -0.05746778 0.2935424 -0.10273445 0.4628570 
�� 0.11475929 0.7680350 0.12893202 1.1360577 
�� -0.03918777 0.4128462 -0.07500963 0.6733769 
�� -0.04251258 0.3367287 -0.08647667 0.5289352 
�� -0.23493028 0.4945531 -0.30105814 1.3779656 

 

Last Value 
carried 
forward 

�� 0.057110998 0.2434638 0.03976534 0.4067278 
�� -0.007469449 0.7141621 -0.01947585 1.0668631 
�� 0.106552433 0.4020277 0.07252765 0.6392440 
�� 0.091170987 0.3080340 0.06379989 0.4810950 
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�� -0.157570806 0.4619799 -0.20836854 1.0964141 
 

Median 
Imputation 

�� -0.09354977 0.2956615 -0.13402056 0.4717615 
�� 0.09513642 0.7587241 0.11511149 1.1284732 
�� -0.02928728 0.4165188 -0.06855655 0.6738861 
�� -0.02013126 0.3355964 -0.06199504 0.5192618 
�� -0.11400131 0.4626130 -0.15238442 1.0552691 

 

Conditional 
Logit 

 
 

Balanced 

�� -0.07615552 0.2935767 -0.1126502 0.4625236 
�� 0.15074006 0.7218983 0.1585480 1.1108020 
�� -0.04510045 0.4168382 -0.1005548 0.6654922 
�� -0.05992669 0.3233472 -0.1029941 0.5162705 
�� -0.12230168 0.4948172 -0.1907195 1.1798448 

 

 
 

Unbalanced 
(But imputed) 

Mean 
Imputation 

�� -0.04350537 0.2888392 -0.08732180 0.4522001 
�� 0.09972025 0.7565596 0.11338074 1.1181839 
�� -0.02588503 0.4070878 -0.06007568 0.6617154 
�� -0.02890030 0.3289778 -0.07115199 0.5181301 
�� -0.22017651 0.4863997 -0.28630585 1.4248434 

 

Last Value 
carried 
forward 

�� 0.07014586 0.2385731 0.05283088 0.4014827 
�� -0.02057578 0.7055523 -0.03258641 1.0521639 
�� 0.11620920 0.3950074 0.08516777 0.6312142 
�� 0.10417631 0.3039078 0.07672558 0.4753835 
�� -0.14369129 0.4552648 -0.19646296 1.1464525 

 

Median 
Imputation 

�� -0.078249682 0.2903286 -0.11828839 0.4601677 
�� 0.080372137 0.7480488 0.09986714 1.1110511 
�� -0.016243206 0.4123068 -0.05381635 0.6624871 
�� -0.007711298 0.3316286 -0.04715232 0.5094865 
�� -0.099931330 0.4572849 -0.14189014 1.1211302 

 
Table 3: Sample size n= 50, T=2, percentage of missingness=30%

 Sample size n= 50, T=2, percentage of missingness=30% 
Model Balanced/Unbalanced Parameter Median Bias MAD Mean Bias RMSE 

Logit (With 
FE) 

 
 

Balanced 

�� -0.09768892 0.2815223 -0.1323880 0.4512832 
�� 0.08893815 0.6959374 0.1506918 1.1535639 
�� -0.13115775 0.4111136 -0.1439335 0.6980234 
�� -0.08391560 0.3190010 -0.1294278 0.5217967 
�� -0.11427075 0.4932405 -0.1848617 1.2574775 

 

 
 

Unbalanced 
(But imputed) 

Mean 
Imputation 

�� -0.04624262 0.2744833 -0.06820391 0.4571537 
�� 0.06214297 0.7773881 0.06100301 1.2151814 
�� -0.01779544 0.4811433 -0.03848048 0.7640412 
�� 0.02343789 0.3521519 -0.01490505 0.5469861 
�� -0.33329933 0.5109296 -0.36369550 0.8748120 

 

Last Value 
carried 
forward 

�� 0.30291813 0.2137996 0.28007086 0.4434043 
�� -0.38837327 0.6439265 -0.32954224 1.0662600 
�� 0.34860522 0.3847189 0.32062928 0.7052962 
�� 0.35828686 0.2717921 0.33350304 0.5500622 
�� 0.01685191 0.4217159 -0.02104363 0.9962462 

 

Median 
Imputation 

�� -0.081919079 0.2602768 -0.12294985 0.4630715 
�� 0.009853557 0.7636018 0.04468553 1.2013292 
�� -0.013160454 0.4715510 -0.02060252 0.7567571 
�� 0.078381729 0.3487885 0.03521928 0.5588983 
�� -0.009659650 0.4590397 -0.18470213 1.6086436 

 

Conditional 
Logit 

 
 

Balanced 

�� -0.08147882 0.2781479 -0.1160803 0.4395600 
�� 0.07675574 0.6865320 0.1340337 1.1341241 
�� -0.11678069 0.4051523 -0.1274709 0.6840850 
�� -0.06985921 0.3150342 -0.1129801 0.5093962 
�� -0.09913601 0.4863511 -0.1756863 1.3441573 
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Unbalanced 
(But imputed) 

Mean 
Imputation 

�� -0.032836315 0.2711211 -0.054044888 0.4482092 
�� 0.047383313 0.7655643 0.047190264 1.1978881 
�� -0.006073291 0.4762234 -0.024771599 0.7525678 
�� 0.035336783 0.3469567 -0.001514772 0.5387079 
�� -0.317244908 0.5035051 -0.346235313 0.8575039 

 

Last Value 
carried 
forward 

�� 0.31154713 0.2106966 0.28907710 0.4453732 
�� -0.39472664 0.6366078 -0.33786347 1.0564189 
�� 0.35598466 0.3805953 0.32913237 0.7018953 
�� 0.36615453 0.2685745 0.34189440 0.5504764 
�� 0.02824329 0.4165644 -0.01311922 1.0638477 

 

Median 
Imputation 

�� -0.069542871 0.2534770 -0.108213966 0.4525874 
�� -0.002605846 0.7515572 0.031160962 1.1843682 
�� -0.000713831 0.4636996 -0.007204582 0.7457460 
�� 0.089964923 0.3449030 0.047757450 0.5516115 
�� 0.005607919 0.4508094 -0.187323187 1.7749189 

 
Table 4: Sample size n= 100, T=2, percentage of missingness=10%

 
 Sample size n= 100, T=2 , percentage of missingness=10% 

Model Balanced/Unbalanced Parameter Median Bias MAD Mean Bias RMSE 

Logit (With 
FE) 

 
 

Balanced 

�� -0.07228644 0.1842174 -0.07599035 0.2920723 
�� 0.08822273 0.4447576 0.08857556 0.7197024 
�� -0.05747610 0.2796213 -0.06445065 0.4244741 
�� -0.05093037 0.2168688 -0.06672647 0.3294939 
�� -0.05420262 0.3213511 -0.06441284 0.5042789 

 

 
 

Unbalanced 
(But imputed) 

Mean 
Imputation 

�� -0.03749734 0.1886506 -0.04774024 0.2823229 
�� 0.04332843 0.4901235 0.04710298 0.7456421 
�� -0.01835328 0.2965854 -0.02896041 0.4355203 
�� -0.01422429 0.2157306 -0.02846297 0.3321337 
�� -0.13318752 0.3145357 -0.15110448 0.5303515 

 

Last Value 
carried 
forward 

�� 0.10178870 0.1695113 0.09058589 0.2784981 
�� -0.09686929 0.4431229 -0.09927796 0.6850687 
�� 0.11099985 0.2711835 0.10372664 0.4234123 
�� 0.12584567 0.2083585 0.10437565 0.3225884 
�� -0.05069961 0.3050331 -0.07441745 0.4820289 

 

Median 
Imputation 

�� -0.070530184 0.1868225 -0.07714314 0.2869500 
�� 0.034155936 0.4788998 0.04029087 0.7396601 
�� -0.006302569 0.2955422 -0.02213776 0.4318408 
�� 0.007513914 0.2226700 -0.01288321 0.3253433 
�� -0.007227562 0.3098864 -0.02294688 0.4811367 

 

Conditional 
Logit 

 
 

Balanced 

�� -0.06490972 0.1833501 -0.06869388 0.2880641 
�� 0.08121175 0.4420033 0.08121098 0.7138732 
�� -0.05104242 0.2787028 -0.05723652 0.4203942 
�� -0.04325147 0.2148389 -0.05946429 0.3256405 
�� -0.04703083 0.3195822 -0.05748410 0.5000328 

 

 
 

Unbalanced 
(But imputed) 

Mean 
Imputation 

�� -0.031231479 0.1871324 -0.04082540 0.2791305 
�� 0.036092516 0.4863453 0.04022326 0.7402306 
�� -0.011918362 0.2939509 -0.02220677 0.4321140 
�� -0.006888399 0.2137831 -0.02166377 0.3291856 
�� -0.126335102 0.3123328 -0.14379939 0.5250474 

 

Last Value 
carried 
forward 

�� 0.10740435 0.1684301 0.09641619 0.2786444 
�� -0.10282124 0.4406473 -0.10504171 0.6815442 
�� 0.11671794 0.2695894 0.10946812 0.4221880 
�� 0.13119330 0.2069030 0.11015894 0.3224577 
�� -0.04484195 0.3033867 -0.06776729 0.4780071 

 
Median 

Imputation 
�� -0.06372851 0.1855683 -0.070071924 0.2830675 
�� 0.027246231 0.4759684 0.033492452 0.7343869 
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�� 0.000171383 0.2924687 -0.015460989 0.4285763 
�� 0.013775794 0.2213976 -0.006229533 0.3227673 
�� -0.001576858 0.3071767 -0.016471548 0.4777190 

 
Table 5: Sample size n= 100, T=2, percentage of missingness=30%

 
 Sample size n= 100, T=2, percentage of missingness=30% 

Model Balanced/Unbalanced Parameter Median Bias MAD Mean Bias RMSE 

Logit (With 
FE) 

 
 

Balanced 

�� -0.03502000 0.2030020 -0.05416836 0.2939348 
�� 0.05713029 0.4211543 0.06490460 0.6997294 
�� -0.03963390 0.2874192 -0.06216534 0.4292398 
�� -0.03932844 0.2089176 -0.05163150 0.3186549 
�� -0.08955836 0.3201186 -0.10075608 0.5001718 

 

 
 

Unbalanced 
(But imputed) 

Mean 
Imputation 

�� 0.01320475 0.1840528 -0.002969705 0.2797749 
�� -0.05927211 0.5077646 -0.021022752 0.7839328 
�� 0.08181991 0.3000307 0.046740932 0.4859521 
�� 0.06665547 0.2306288 0.058669485 0.3542179 
�� -0.29145482 0.3282601 -0.316968754 0.5967817 

 

Last Value 
carried 
forward 

�� 0.35902691 0.1418685 0.34769142 0.4116727 
�� -0.39361085 0.4104849 -0.39788676 0.7441219 
�� 0.39424917 0.2359955 0.38323516 0.5412242 
�� 0.39502412 0.1891663 0.38592573 0.4777190 
�� 0.04025657 0.2559574 0.03446911 0.3992235 

 

Median 
Imputation 

�� -0.047511395 0.1829451 -0.06302215 0.2874039 
�� -0.079700540 0.4962265 -0.03922133 0.7809862 
�� 0.093461120 0.3069038 0.06199908 0.4865401 
�� 0.104055796 0.2393095 0.09139092 0.3613082 
�� 0.002656811 0.2972932 -0.01079136 0.4639895 

 

Conditional 
Logit 

 
 

Balanced 

�� -0.02820120 0.2019551 -0.04705065 0.2904395 
�� 0.05061970 0.4186657 0.05773904 0.6942483 
�� -0.03286062 0.2853325 -0.05500692 0.4251863 
�� -0.03231352 0.2066634 -0.04449453 0.3151893 
�� -0.08317350 0.3175321 -0.09359469 0.4954965 

 

 
 

Unbalanced 
(But imputed) 

Mean 
Imputation 

�� 0.01951633 0.1830035 0.003284975 0.2777702 
�� -0.06494262 0.5047452 -0.027048228 0.7791527 
�� 0.08745804 0.2980833 0.052649428 0.4833896 
�� 0.07248308 0.2289276 0.064549698 0.3529136 
�� -0.28315394 0.3260299 -0.308972555 0.5897241 

 

Last Value 
carried 
forward 

�� 0.36264398 0.1408639 0.35151478 0.4141507 
�� 0.39698196 0.4081065 -0.40141476 0.7428539 
�� -0.39764056 0.2343155 0.38686078 0.5421680 
�� 0.39859719 0.1878576 0.38956887 0.4796411 
�� 0.04603133 0.2541782 0.04001619 0.3973820 

 

Median 
Imputation 

�� -0.040859345 0.1813636 -0.056458013 0.2840619 
�� -0.085251561 0.4930625 -0.045088436 0.7764047 
�� 0.098480981 0.3048243 0.067765955 0.4841994 
�� 0.109418298 0.2377358 0.096957227 0.3605487 
�� 0.009116793 0.2959929 -0.004814894 0.4611702 
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Table 6: Sample size n= 250, T=2, percentage of missingness=10%
 

 Sample size n= 250, T=2, , percentage of missingness=10% 
Model Balanced/Unbalanced Parameter Median Bias MAD Mean Bias RMSE 

Logit (With 
FE) 

 
 

Balanced 

�� -0.02220839 0.1212544 -0.03098327 0.1786894 
�� 0.02049336 0.2935008 0.01526028 0.4324788 
�� -0.03594754 0.1718301 -0.03819671 0.2608533 
�� -0.02756131 0.1294513 -0.03304522 0.1921290 
�� -0.04998840 0.1957287 -0.05788045 0.2884434 

 

 
 

Unbalanced 
(But imputed) 

Mean 
Imputation 

�� -0.000062895 0.1188605 -0.006056013 0.1756821 
�� -0.02488434 0.3078010 -0.02344441 0.4479249 
�� -0.001091354 0.1765698 0.0000306389 0.2646646 
�� 0.006701528 0.1369635 0.003440559 0.1968550 
�� -0.1288096 0.1937679 -0.1309971 0.3120680 

 

Last Value 
carried 
forward 

�� 0.14034270 0.1067698 0.12697848 0.2070539 
�� -0.16940225 0.2836963 -0.15569665 0.4535529 
�� 0.13867964 0.1639241 0.13009365 0.2779787 
�� 0.13729705 0.1272969 0.12860554 0.2254177 
�� -0.06286251 0.1817310 -0.06098229 0.2708683 

 

Median 
Imputation 

�� -0.030348562 0.1166951 -0.036932202 0.1779291 
�� -0.022693466 0.3087522 -0.029597161 0.4444668 
�� 0.005825454 0.1758860 0.004985995 0.2634561 
�� 0.020056497 0.1337864 0.018545069 0.1962863 
�� 0.004868607 0.1808692 0.002149049 0.2755785 

 

Conditional 
Logit 

 
 

Balanced 

β� -0.01936146 0.1208335 -0.02827153 0.1777064 
�� 0.01764374 0.2927974 0.01258845 0.4312259 
�� -0.03328400 0.1713651 -0.03547119 0.2597482 
�� -0.02495810 0.1291189 -0.03031035 0.1911174 
�� -0.04718493 0.1950358 -0.05518467 0.2871821 

 

 
 

Unbalanced 
(But imputed) 

Mean 
Imputation 

�� 0.002523502 0.1186160 -0.003475607 0.1750955 
�� -0.027319460 0.3070338 -0.025937302 0.4469000 
�� 0.001336443 0.1761931 0.002579831 0.2639672 
�� 0.009222566 0.1362616 0.006007530 0.1963502 
�� -0.126186902 0.1932438 -0.128183895 0.3102283 

 

Last Value 
carried 
forward 

�� 0.14262823 0.1064225 0.1291549 0.2080332 
�� -0.17134554 0.2828948 -0.1578054 0.4532649 
�� 0.14066349 0.1633358 0.1322608 0.2784365 
�� 0.13941943 0.1269313 0.1307998 0.2262562 
�� -0.06021933 0.1812858 -0.0583992 0.2696480 

 

Median 
Imputation 

�� -0.027842887 0.1162948 -0.034286229 0.1768956 
�� -0.025111091 0.3080217 -0.032062290 0.4434928 
�� 0.008434262 0.1754385 0.007510252 0.2628136 
�� 0.022697870 0.1333265 0.021056462 0.1959866 
�� 0.007501270 0.1805806 0.004624547 0.2749200 
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Table 7: Sample size n= 250, T=2, percentage of missingness=30%
 

 Sample size n= 250, T=2, percentage of missingness=30% 
Model Balanced/Unbalanced Parameter Median Bias MAD Mean Bias RMSE 

Logit (With 
FE) 

 
 

Balanced 

�� -0.02364625 0.1198129 -0.03093566 0.1789230 
�� 0.02078387 0.2892116 0.02535754 0.4360528 
�� -0.01536213 0.1612290 -0.02575940 0.2571086 
�� -0.03246477 0.1283428 -0.03193966 0.1983351 
�� -0.04746978 0.2137486 -0.06054607 0.3153618 

 

 
 

Unbalanced 
(But imputed) 

Mean 
Imputation 

�� 0.02659576 0.1202874 0.01361173 0.1779912 
�� -0.08234840 0.3292292 -0.08838933 0.4975174 
�� 0.07984945 0.1743480 0.07600617 0.2935755 
�� 0.06455982 0.1440487 0.07011816 0.2222589 
�� -0.23027564 0.2009359 -0.25093272 0.3944475 

 

Last Value 
carried 
forward 

�� 0.36721451 0.09416499 0.35943622 0.3851339 
�� -0.41437928 0.26775095 -0.40908792 0.5744193 
�� 0.41444661 0.14845517 0.40645050 0.4684899 
�� 0.39843232 0.11653320 0.39994745 0.4331702 
�� 0.09406133 0.15854891 0.09008464 0.2546912 

 

Median 
Imputation 

�� -0.03270569 0.1155297 -0.04358773 0.1815034 
�� -0.08948969 0.3208633 -0.10477060 0.4964748 
�� 0.09923669 0.1780396 0.08975553 0.2957714 
�� 0.10125098 0.1396529 0.10477068 0.2348333 
�� 0.06576014 0.1935463 0.05703478 0.3017766 

 

Conditional 
Logit 

 
 

Balanced 

�� -0.02106994 0.1195159 -0.02822967 0.1779503 
�� 0.01809599 0.2887023 0.02266366 0.4347297 
�� -0.01271199 0.1607463 -0.02307074 0.2561375 
�� -0.02976107 0.1280819 -0.02921516 0.1973371 
�� -0.04490697 0.2132426 -0.05784477 0.3140465 

 

 
 

Unbalanced 
(But imputed) 

Mean 
Imputation 

�� 0.02926475 0.1199154 0.01601573 0.1777109 
�� -0.08441705 0.3283012 -0.09058658 0.4967345 
�� 0.08209052 0.1738769 0.07823564 0.2934669 
�� 0.06681162 0.1435766 0.07238804 0.2224589 
�� -0.22748950 0.2005140 -0.24796381 0.3919718 

 

Last Value 
carried 
forward 

�� 0.36863870 0.09399135 0.36090511 0.3863827 
�� -0.41564689 0.26711562 -0.41044343 0.5747321 
�� 0.41583179 0.14803951 0.40781205 0.4694017 
�� 0.39981778 0.11624448 0.40134133 0.4343017 
�� 0.09604776 0.15814231 0.09213702 0.2549080 

 

Median 
Imputation 

�� -0.03027144 0.1151678 -0.04106759 0.1804493 
�� -0.09177060 0.3201584 -0.10691270 0.4957795 
�� 0.10145341 0.1775619 0.09193514 0.2957680 
�� 0.10332325 0.1393303 0.10691059 0.2353178 
�� 0.06780488 0.1931919 0.05922304 0.3015702 

 

5. Discussion  
 
As expected, sample size matters, both for the bias and the 
precision. Indeed, all the reported measures (median bias, 
median absolute deviation, mean bias and the root mean 
square errors) are observed to reduce significantly as the 
sample size increases for both the unconditional and 
conditional logit models. The magnitude of the median bias is 
observed to increase for the conditional logit estimator 
compared to the unconditional logit estimator when all the 
three imputation techniques are performed more so when the 
sample size is large. 

 
Comparatively, for n=250, imputation by last value carried 
forward (LVCF) increases the median bias with respect to the 
balanced panel set. The estimates from mean and median 
imputation techniques are however inconsistent although 
most of them also indicate larger magnitudes compared to the 
balanced scenario. 
 
LVCF provides the smallest MAD for all the five parameters 
irrespective of the percentage missingness and sample size. 
Mean and median imputation however increase the MAD. 
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6. Conclusion and Recommendation 
 
In this paper, we have discussed brief estimation method 
and procedures for estimating nonlinear (binary choice 
logit) panel data regression models. 
 
The major concern being the effect of non-responses 
(missingness) in the parameter estimates, we have developed 
an analogous estimation process for the logit panel model in 
the presence of imputed values to replace the missing 
observations. Detailed derivations of the conditional 
maximum likelihood logit panel data estimators are 
discussed. In particular, we condition out the incidental 
parameters from the logit model thereby curbing the 
incidental parameter problem which would otherwise have 
made parameter estimation complicated. The maximum 
likelihood estimates for the parameters are thus obtainable 
easily if the data se is balanced. In the cases of 
unbalancedness we employed three simple imputation 
techniques (mean imputation, last value carried forward and 
median imputation) to make the data balanced. Through 
Monte Carlo simulations, comparisons are made for the 
imputation techniques so as to assess the bias and efficiency 
of each technique on the estimates.  
 
A key importance of deriving the estimators is to increase the 
theoretical understanding of the estimators and also reduce 
the computational complexity while estimating logit panel 
models. As observed from the Monte Carlo results, 
unbalancedness in a data set biases the parameter estimates 
and the different imputation techniques employed in this 
study respond differently to the bias and efficiency of the 
estimates. 
 
As a recommendation, further developments can be done on 
this study by considering other imputation techniques and 
also using different time periods greater than T=2. 
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