International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Call for Papers | Fully Refereed | Open Access | Double Blind Peer Reviewed

ISSN: 2319-7064


Downloads: 109

India | Computer Science Engineering | Volume 5 Issue 7, July 2016 | Pages: 1240 - 1244


Implementing K-Means Clustering Algorithm Using MapReduce Paradigm

Botcha Chandrasekhara Rao, Medara Rambabu

Abstract: Clustering is a useful data mining technique which groups data points such that the points within a single group have similar characteristics, while the points in different groups are dissimilar. Partitioning algorithm methods such as k-means algorithm is one kind of widely used clustering algorithms. As there is an increasing trend of applications to deal with vast amounts of data, clustering such big data is a challenging problem. Recently, partitioning clustering algorithms on a large cluster of commodity machines using the MapReduce framework have received a lot of attention. Traditional way of clustering text documents is Vector space model, in which tf-idf is used for k-means algorithm with supportive similarity measure. This project exhibits an approach to cluster text documents in which results obtained by executing map reduce k-means algorithm on single node cluster show that the performance of the algorithm increases as the text corpus increases.

Keywords: Vector space model, map reduce, text clustering, map reduce k-means, Hadoop



Citation copied to Clipboard!

Rate this Article

5

Characters: 0

Received Comments

No approved comments available.

Rating submitted successfully!


Top