
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 7, July 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Implementing K-Means Clustering Algorithm Using
MapReduce Paradigm

Botcha Chandrasekhara Rao
1
, Medara Rambabu

2

1M.Tech Scholar, Department of Computer Science & Engineering, Pydah Kaushik College of Engineering, Gambheeram Village,

Anandapuram, Mandal-531163.Visakhapatnam, AP, India

2HOD &Associate Professor, Department of Computer Science & Engineering, Pydah Kaushik College of Engineering, Gambheeram Village,
Anandapuram, Mandal-531163.Visakhapatnam, AP, India

Abstract: Clustering is a useful data mining technique which groups’ data points such that the points within a single group have similar
characteristics, while the points in different groups are dissimilar. Partitioning algorithm methods such as k-means algorithm is one kind
of widely used clustering algorithms. As there is an increasing trend of applications to deal with vast amounts of data, clustering such big
data is a challenging problem. Recently, partitioning clustering algorithms on a large cluster of commodity machines using the
MapReduce framework have received a lot of attention. Traditional way of clustering text documents is Vector space model, in which tf-idf
is used for k-means algorithm with supportive similarity measure. This project exhibits an approach to cluster text documents in which
results obtained by executing map reduce k-means algorithm on single node cluster show that the performance of the algorithm increases
as the text corpus increases.

Keywords: Vector space model, map reduce, text, clustering, map reduce k-means, Hadoop

1. Introduction

Big Data[1] is the term applied to data sets whose size is
beyond the ability of thecommonly used software tools to
capture, manage, and process within a tolerableelapsed time.
Big data can be analysed with the software tools commonly
used as part of advanced analytics disciplines such
as predictiveanalytics, datamining, textanalytics and statistica
l analysis. The semi-structured and unstructured data may not
fit well in traditional data warehouses based on relational
databases.Hadoop is a platform that provides both distributed
storage and computational capabilities. It is an open source
software project that enables the distributed processing of
large data sets across clusters of commodity servers. It is
designed to scale up from a single server to thousands of
machines, with a very high degree of fault tolerance. Hadoop
is a distributed master-slave architecture that consists of
Hadoop distributed file system (HDFS) for storage and Map-
Reduce for computational capabilities.

Mathematical models like Boolean model, probabilistic
model, vector space model are proposed to use in information
retrieval systems. Vector space model (VSM) [2] is most
popular and widely used model.

2. Literature Survey

A. Vector Space Model

In VSM [3], A term document matrix t X d is created, where
t is the terms(words) of the documents and d represents
documents and find the frequency of the terms in each and
every document..This term frequency cannot able to find its

importance in the whole corpus rather cannot compare with
other documents. Term frequency -Inverse document
frequency (TF-IDF) overcomes the limitations of term
frequency and calculated term weighting to find how
important a word is to a document in a collection or corpus.

The weight vector for document d isVd=[w1,d, w2,d, w3,d,…..,
wN,d]T, where

tfi,d is the term frequency of term t in document d (a local
parameter)

For any two documents dj and dk, their similarity is

where wi is the weight of the term (Here tf-idf value)
n is the number of dimensions of document vector

B. K-Means Clustering

K-Means is one of the simplest unsupervised learning
algorithms that solve the well known clustering problem.
The procedure follows a simple and easy way to classify a
given data set through a certain number of clusters (assume k
clusters).The number of clusters should match the data. An
incorrect choice of the number of clusters will invalidate the
whole process. An empirical way to find the best number of
clusters is to try K-means clustering with different number of
clusters and measure the resulting sum of squares.

Paper ID: 14071601 1240

http://searchbusinessanalytics.techtarget.com/definition/advanced-analytics
http://searchcrm.techtarget.com/definition/predictive-analytics
http://searchsqlserver.techtarget.com/definition/data-mining
http://searchbusinessanalytics.techtarget.com/definition/text-mining
http://whatis.techtarget.com/definition/statistical-analysis
http://whatis.techtarget.com/definition/statistical-analysis
http://whatis.techtarget.com/definition/statistical-analysis
http://searchsqlserver.techtarget.com/definition/data-warehouse
http://searchsqlserver.techtarget.com/definition/relational-database
http://searchsqlserver.techtarget.com/definition/relational-database
http://searchsqlserver.techtarget.com/definition/relational-database

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 7, July 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The basic K-means Algorithm is as follows:
Step 1: Select K points as initial centroids
Step2: repeat
Step 3: Form K clusters by assigning each point to its

Closest centroid
Step 4: Recompute the centroid of each cluster
Step 5: Until centroids do not change.

The key step of Basic K-means algorithm is selection of
proper initial centroids. Initial clusters are formed by random
initialization of centroids.

C. Hadoop

Hadoop is a platform that provides both distributed storage
and computational capabilities. It is an open source software
project that enables the distributed processing of large data
sets across clusters of commodity servers. It is designed to
scale up from a single server to thousands of machines, with
a very high degree of fault tolerance. Hadoop[7] is a
distributed master-slave architecture that consists of Hadoop
distributed file system (HDFS) for storage and Map-Reduce
for computational capabilities. Hadoop can handle all types
of data from disparate systems: structured, unstructured, log
files, pictures, audio files, communications records, email –
just about anything you can think of, regardless of its native
format. Even when different types of data have been stored in
unrelated systems, you can dump it all into your Hadoop
cluster with no prior need for a schema.

Hadoop Distributed File System (HDFS)[5] is a file system
that spans all the nodes in a Hadoop cluster for data storage.
The HDFS splits large data files into chunks that are
managed by different nodes in the cluster. Each chunk is
replicated across several nodes to address single node outage
or fencing scenarios.

D. MapReduce Programming

MapReduce[6] runs as a series of jobs, with each job
essentially a separate Java application that goes out into the
data and starts pulling out information as needed. Based on
the MapReduce design, records are processed in isolation via
tasks called Mappers. The output from the Mapper tasks is
further processed by a second set of tasks, the Reducers,
where the results from the different Mapper tasks are merged
together. Using MapReduce instead of a query gives data
seekers a lot of power and flexibility, but also adds a lot of
complexity. The Map and Reduce functions
of MapReduce are both defined with respect to data
structured in (key, value) pairs. Map takes one pair of data
with a type in one data domain, and returns a list of pairs in a
different domain:

Map(k1,v1) → list(k2,v2)
The Map function is applied in parallel to every pair in the
input dataset. This produces a list of pairs for each call. After
that, the MapReduce framework collects all pairs with the
same key from all lists and groups them together, creating
one group for each key.
The Reduce function is then applied in parallel to each group,
which in turn produces a collection of values in the same
domain:

Reduce(k2, list (v2)) → list(v3)
Each Reduce call typically produces either one value v3 or an
empty return, though one call is allowed to return more than

one value. The returns of all calls are collected as the desired
result list.

Thus the MapReduce framework transforms a list of (key,
value) pairs into a list of values.

Figure 1: MapReduce Tasks

3. Mapreduce K-Means Clustering

The mapreduce k-means clustering approach for processing
big text corpus [4] can be done by the following steps:
1) Give the Sequence file from directory of text documents

as input.
2) Tokenize and generate TF-IDF vector for each document

from sequence file.
3) Apply Map-Reduce K-Means algorithm to form k clusters.

A. Sequence File from Directory of Text Documents

Map reduce programming is coined to process huge data sets
in parallel and distributed environment. Suppose, we select
the input data from a document set, where the text files in the
directory are small in size. Since HDFS and Mapreduce are
optimized for large files, convert the small text files into
larger file i.e., SequenceFile format. SequenceFile is a
hadoop class, which allows us to write document data in
terms of binary <key, value> pairs, where key is a Text with
unique document id and value is Text content within the
document in UTF-8 format. SequenceFile packs the small
files and process whole file as a record. Since the
SequenceFile is in binary format, we could not able to read
the content directly but faster for read /write operations.

B. Creating TF-IDF Vectors

The sequence file from the previous step is fed as Input to
create vectors. The TF-IDF vectors are calculated in
Mapreduce by the following steps:

Step 1: Tokenization: The input fed to map function is in
format of <key, value> pairs, where key is the document
name and value as document content. The outcome of reduce
function is also <key, value> pair where key is document
name and value are tokens (words) present in that document.
Ex: Key: /acq1.txt: Value: [macandrews, forbes, holdings,
bids, revlon, mcandrews, forbes, holdings, inc,said, offer,
dlrs, per, share, all, revlon, group]

Step 2: Dictionary file: This step assign unique number to
each token in all documents. The input format for the map
function is <document name, wordlist> and the output of
reduce function is <Word, uniqueid>.

Paper ID: 14071601 1241

http://en.wikipedia.org/wiki/Data_domain

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 7, July 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Ex: Key: accounts: Value: 152.

Step 3: Frequency count: The number of times the word
appears globally in all documents is calculated in this step.
The input to this map function is <docname, words>and
output format is <word id, 1>.The value of output of the map
function is accumulated and find the sum in reduce function.
The output format of reduce function is <word id, count>.
Ex: Key: 50: Value: 2

Step 4 : Calculate term frequency : The map reduce function
in this step takes input as <docname, wordlist > and counts
the number of times each word or term ti occurs in that
document dj. The outcome of this step is in the format of
<docname, {ti: count}>.

Ex: In the below example, acq1.txt is document name and the
values are in the format of list of (wordid:count)
Key:/acq1.txt: Value: {3258:1.0, 3257:1.0, 157:2.0 ...}

Step 5 : Calculate tf-idf value : The output of step 4 is taken
as input to map function of this step and calculates the weight
vector as tf X tf-idf value of each term ti in each document dj
as specified in equation(1). The output format of the result is
<docname, {t1: tf-idf1, t2:tf-idf2 ...ti:tf-idfi}>.
For example: The output format of thisstep is as follows:
Key: acq1.txt: Value: {3258:0.12728, 3257:0.12728,
462:0.08060 ...}

C. MapReduce K-Means Algorithm

The implementation of map reduce k-means accepts two
input files. One input file contains the documents with each
term and its tf-idf values, and the second is k initial centroids
file. The set of k initial centroids are selected randomly. In
every iteration, the map reduce framework splits the input
data into M splits and then processed in parallel as shown in
Figure 2.

Figure 2: MapReduce Framework for K-Means Algorithm

The map function read the document in the format of
<docname, {t1 :tf-idf1, t2:tf-idf2, ...ti:tf-idfi}> along with
randomly selected set of k initial centroids. The map function
determines the document set which are closer to the centroids
by calculating cosine similarity measure and emits records
containing all documents data with kcentroids in the format
as <k-center, {docname, {t1 :tfidf1, t2:tf-idf2, ...ti: tf-idfi}>.
The reducer function receives the output of map function k-
centroids along with closest documents bound to it. and
calculates new k-centroid. The mapper and reducer algorithm
of k-means is explained as below:
Algorithm for Mapper

Input: A set of objects X = {x1, x2… xn}, A Set ofinitial
Centroids C = {c1, c2, ,ck}
Output: An output list which contains pairs of (Ci, xj)where
1 ≤ i≤ n and 1 ≤j ≤ k

Procedure
M1←{x1, x2… xm}
current_centroids←C
Distance (p, q) =√Σd

i=1(pi – qi)2(where pi (or qi)is the
coordinate of p (or q) in dimension i)

for all xi ϵ M1 such that 1≤i≤m do
bestCentroid←null
minDist←∞
for all c ϵ current_centroids do

dist← distance (xi, c)
if (bestCentroid = null || dist<minDist)
then

minDist←dist

bestCentroid ← c
end if

end for
emit (bestCentroid, xi)
i+=1

end for
return Outputlist

Algorithm for Reducer

Input: (Key, Value), where key = bestCentroid and Value
=Objects assigned to the lpgr'; 1\] x centroid by the mapper

Output: (Key, Value), where key = oldCentroid and value =
newBestCentroid which is the new centroid value calculated
for that bestCentroid

Procedure

Outputlist←outputlist from mappers
𝝑 ← { }
newCentroidList ← null
for all β outputlist do

centroid ←β.key
object ←β.value
[centroid] ← object

end for
for all centroid ϵ 𝝑 do

newCentroid, sumofObjects,
sumofObjects← null
for all object ϵ 𝝑 [centroid] do

Paper ID: 14071601 1242

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 7, July 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

sumofObjects += object
numofObjects += 1

end for
newCentroid ← (sumofObjects +
numofObjects)
emit (centroid, newCentroid)
end for
end

The outcome of the k-means map reduce algorithm is the
cluster points along with bounded documents as <key, value>
pairs, where key is the cluster id and value contains in the
form of vector: weight. The weight indicates the probability
of vector be a point in that cluster. For Example: Key: 92:
Value: 1.0: [32:0.127,79:0.114, 97:0.114, 157:0.148 ...].

The final output of the program will be the cluster name, file
name: number of text documents that belong to that cluster.

4. Experimental Results

This section presents the results obtained by executing map
reduce k-means clustering algorithm on cluster of machines.
The experimentation with 20_newsgroups dataset is
explained in detailed in below sections.

A. Environment setup

The experimentation is conducted in single node cluster. The
single node is configured with I7processor, 4 GB memory,
64GB hard disk along with JDK 1.7.0 and hadoop 2.4.1
version. The Operating system used is Ubuntu 14.04LTS.

B. Dataset description

The 20_Newsgroups data set is a collection of approximately
20,000 newsgroup documents, partitioned (nearly) evenly
across 20 different newsgroups.It was originally collected by
Ken Lang, probably for his Newsweeder: Learning to filter

netnews paper, though he does not explicitly mention this
collection. The 20 newsgroups collection has become a
popular data set for experiments in text applications of
machine learning techniques, such as text classification and
text clustering. The data is organized into 20 different
newsgroups, each corresponding to a different topic. Some of
the newsgroups are very closely related to each other
(e.g. comp.sys.ibm.pc.hardware /

comp.sys.mac.hardware), while others are highly unrelated
(e.g. misc.forsale / soc.religion.christian).

C. Data pre-processing

The data available here are in .tar.gz bundles. You will
need tar and unzip to open them. Each subdirectory in the
bundle represents a newsgroup; each file in a subdirectory is
the text of some newsgroup document that was posted to that
newsgroup. Create a sequence file from 20_newsgroups text
documents. Sequence file is passed as input to find tf-idf
value of each term in every text document. The tf-idf file is
fed as input to map reduce k-means algorithm for form k
number of clusters.

D. Results

In a single node cluster, the map reduce k-means algorithm is
executed with 20_newsgroups dataset with selected number
of text files of 20,000 from 20 different topics. The algorithm

tested in single node cluster with 20_newsgroups database
and the performance of the map reduce algorithm increases
efficiently by increasing the number of input files and
increasing number of nodes in the cluster. The runtime
execution in terms of seconds can be given as the CPU time
spent for each iteration.

E. Output

 Time taken for iteration 0

 Time taken for iteration 1

 Time taken for iteration 2

Paper ID: 14071601 1243

http://qwone.com/~jason/20Newsgroups/lang95.bib
http://qwone.com/~jason/20Newsgroups/lang95.bib
http://qwone.com/~jason/20Newsgroups/lang95.bib
http://www.gnu.org/software/tar/tar.html
http://www.gnu.org/software/gzip/gzip.html

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 7, July 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Clusters

5. Conclusions and Future Work

Information retrieval techniques are widely popular in most
of the search engines to efficiently organize and retrieve
information systems. Most of the data in internet is in the
format of unstructured and semi structured. Currently
clustering techniques are used to organize and group the
similar data objects to retrieve search results faster.
Traditional way of clustering text documents is Vector space
model, in which tf-idf is used for k-means algorithm with
supportive similarity measure. As the data is enormously
increasing day by day, elastic resources are required to store
and compute. Hadoop framework supports to store and
compute big data in parallel and distributed platform with the
help of HDFS and Map reduce.

This paper exhibits an approach to cluster text documents
using vector space model. The results obtained by executing
map reduce k-means algorithm on single node cluster shows
that the performance of the algorithm increases as the text
corpus increases. In the current approach of map reduce k-
means algorithm, the initial centroids are selected randomly.
In future, Canopy clustering algorithm can be used as initial
step to get initial centroids and then fed this as input to map
reduce k-means algorithm. In future, we can try to cluster
text corpus by map reduced text clustering based on frequent
itemsets.

References

[1] Hadoop The definitive guide.

[2] G. Salton, A. Wong, C. S. Yang.A vector space model for
automatic indexing. Communications of the ACM,
version.18 n.11, pages.613-620, Nov. 1975.

[3] GeorgeTsatsaronis and Vicky Panagiotopoulou. A
generalized vector space model for text retrieval based on
semantic relatedness. Proceedings of the EACL 2009
student research workshop, pages 70-78, April 2009.

[4] J Dittrich, JA Quiané-Ruiz. Efficient big data
processingin Hadoop MapReduce. Proceedings of the
VLDB Endowment, 2012 - dl.acm.org, Volume 5 Issue
12, August 2012 ,Volume 5 Issue 12, August 2012.

[5] Sanjay, G., G. Howard, and L. Shun-Tak, The Google file
system, in Proceedings of the nineteenth ACM
symposium on Operating systems principles. ACM:
Bolton Lan,ding, NY, USA 2003,

[6] Jeffrey, D. and G. Sanjay,. MapReduce: simplified
dataprocessing on large clusters. Commun. ACM, 51(1):
pages 107-113 2008.

[7] Apache Lucene Hadoop[EB/OL].
http://hadoop.apache.org/.

Author Profile

Botcha Chandrasekhara raois currently pursuing his
2 years M.Tech in CSE at Pydah Kaushik College of
Engineering, Gambheeram Village, Anandapuram
Mandalam, Visakhapatnam. His area of interest
includes Cloud Computing.

Medara Rambabu is currently working as HOD &
Associate Professor in Department of Computer
Science & Engineering at Pydah Kaushik College of
Engineering, Gambheeram Village, Anandapuram

Mandalam, Visakhapatnam. He completed his M.Tech from
JNTUK in 2010, and he completed his B.Tech from AU, in 2004.He
has more than 6 years of teaching experience in various engineering
colleges. His research interest includes Computer Organization,
Data Communication Systems, Computer Networks and DM & DW.

Paper ID: 14071601 1244

