Downloading: Outlier Detection Based on Surfeit Entropy for Large Scale Categorical Data Set
International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
www.ijsr.net | Most Trusted Research Journal Since Year 2012

ISSN: 2319-7064



Your Article PDF will be Downloaded in Next Seconds

Survey Paper | Computer Science & Engineering | India | Volume 3 Issue 12, December 2014

Outlier Detection Based on Surfeit Entropy for Large Scale Categorical Data Set

Neha L. Bagal

Number of methods based on classification, clustering, frequent patterns and statistics has been proposed to collect meaningful information by removing unwanted data. Information theory uses statistical approach to achieve its goal. The outlier detection from unsupervised data sets is more difficult task since there is no inherent measurement of distance between objects. Here in this work, we proposed a novel framework based on information theoretic measures for outlier detection in unsupervised data with the help of Max/Surfeit Entropy. In which we are using different information theoretic measures such as entropy and dual correlation. Using this model we proposed SEB-SP outlier detection algorithm which do not require any user defined parameter except input data.We have also used the concept of weighted entropy. Our method detects outliers better than existing approach.

Keywords: Outlier detection, surfeit entropy, weighted entropy, dual correlation

Edition: Volume 3 Issue 12, December 2014

Pages: 1188 - 1192

Share this Article

How to Cite this Article?

Neha L. Bagal, "Outlier Detection Based on Surfeit Entropy for Large Scale Categorical Data Set", International Journal of Science and Research (IJSR), https://www.ijsr.net/search_index_results_paperid.php?id=SUB14522, Volume 3 Issue 12, December 2014, 1188 - 1192



Top