Downloads: 0 | Views: 17
Student Project | Computer Science & Engineering | India | Volume 11 Issue 6, June 2022
Microclustering with Outlier Detection for DADC
Aswathy Priya M.
Abstract: Cluster analysis is a machine learning technique for categorizing unlabeled data. The data points are grouped into different clusters based on how similar they are. The objects that may be comparable are grouped together in a group with few or no similarities. Density based clustering algorithms, which can locate clusters of any shape while avoiding outliers, are used in many applications. Density based clustering algorithms consider dense sections of objects in the data space to be clusters, separated by low density areas (noise). The Domain Adaptive Density Clustering (DADC) technique was created to point out the issues of scattered cluster loss and cluster fragmentation. Micro clustering is a stream clustering technique that preserves compact data item information. Micro clusters estimate local density by combining data from several data points in a specific area. Micro-cluster is a time-based improvement to the cluster function that effectively compresses data. Incorrect data might appear in a database for a variety of reasons. Outlier identification is a technique for filtering irregularities generated in a database. In this work, we intend to put forward a method for micro clustering technique with outlier removal for Domain Adaptive Density Clustering.
Keywords: Density Clustering, Micro Clustering, Outlier Removal
Edition: Volume 11 Issue 6, June 2022,
Pages: 1875 - 1880
Similar Articles with Keyword 'Density'
Downloads: 6
Research Paper, Computer Science & Engineering, India, Volume 10 Issue 7, July 2021
Pages: 421 - 424Comparative Analysis of AI Techniques in the Prediction of Heart Disease
Irtiqa Dhar
Downloads: 99
Review Papers, Computer Science & Engineering, India, Volume 3 Issue 10, October 2014
Pages: 2253 - 2256Survey on Hubness - Based Clustering Algorithms
Nikita Dhamal | Antara Bhatttacharya