International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Call for Papers | Fully Refereed | Open Access | Double Blind Peer Reviewed

ISSN: 2319-7064


Downloads: 1 | Views: 91 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1

Analysis Study Research Paper | Computer Science & Engineering | India | Volume 10 Issue 1, January 2021 | Rating: 4.8 / 10


     

Anomaly Detection: Enhancing Systems with Machine Learning

Yogananda Domlur Seetharama


Abstract: Anomaly detection is crucial across various industries for maintaining system integrity and financial health by identifying irregular data patterns. Traditional methods, which are manual and rule-based, are often static and inefficient, especially with large and diverse data sets. Machine learning ML enhances anomaly detection by automating the process, learning from data without frequent updates, and handling large volumes of complex data efficiently. ML techniques, including unsupervised and supervised learning, improve the accuracy and scalability of anomaly detection. As ML technology advances, it promises more sophisticated and adaptable solutions for anomaly detection, significantly reducing potential financial losses and improving security and operational efficiency across industries.


Keywords: anomaly detection, machine learning, data integrity, unsupervised learning, supervised learning


Edition: Volume 10 Issue 1, January 2021


Pages: 1659 - 1668



How to Download this Article?

Type Your Valid Email Address below to Receive the Article PDF Link


Verification Code will appear in 2 Seconds ... Wait

Top