International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Call for Papers | Fully Refereed | Open Access | Double Blind Peer Reviewed

ISSN: 2319-7064


Downloads: 1 | Views: 109

Research Paper | Computer Science & Engineering | India | Volume 11 Issue 4, April 2022 | Rating: 5 / 10


Machine Learning Approaches to Ambient Air Quality Prediction

Sweta [44]


Abstract: Air pollution is a significant concern in today's smart city environment. Pollution is monitored in real time by confined authorities who have the authority to assess current traffic conditions and make recommendations based on what they discover.Sensors based on the Internet of Things have been deployed, drastically altering the features of air quality prediction. To gain a better understanding of their processing time for multiple datasets, a comparative analysis of these methodologies is required. To gain a better understanding of their processing time for multiple datasets, a comparative analysis of these methodologies is required. The pollution prediction in this work was done utilizing advanced supervised approaches as well as a comparative evaluation of numerous models to select the optimum model for effectively predicting air quality. Kaggle was used to conduct experiments, and multiple datasets were used to estimate pollution levels.) Aside from these methods, the processing time of each methodology is estimated using standalone learning, and hyperparameter tweaking is fitted using Kaggle. Performance measures were analyzed to obtain the best-fit model in terms of processing time and the lowest error rate.


Keywords: Air Quality Index, Nitrogen dioxide (NO2), Particulate Matters (PM10, PM2.5), Carbon Monoxide (CO), Sulphur dioxide (SO2), MAE, RMSE, MSE


Edition: Volume 11 Issue 4, April 2022,


Pages: 1028 - 1031


How to Download this Article?

Type Your Valid Email Address below to Receive the Article PDF Link


Verification Code will appear in 2 Seconds ... Wait

Top