International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Call for Papers | Fully Refereed | Open Access | Double Blind Peer Reviewed

ISSN: 2319-7064


Downloads: 3 | Views: 189 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1

Research Paper | Aerospace Engineering | Taiwan | Volume 10 Issue 5, May 2021


Controller Design for CubeSat Attitude Control with BLDCM and Raction Wheels

Kuei-Tsun Chen [2]


Abstract: For all satellites, attitude, orientation and orbit-propagation are critical to mission success. The attitude control system (ACS) usually has different operation modes for various situations of the task; for example, detumbling, three-axis stabilization, pointing. . . etc. The purpose of this article is to establish a dynamic mathematical model for simulating a small satellite in Low-Earth Orbit (LEO), and to design relevant controllers to implement attitude-pointing. In particular, the CubeSat applies a permanent magnet brushless DC-motor (BLDCM) connected with a reaction-wheel as an actuator, which generates control torque imposing angular velocity on satellite body to track the expected attitude signal. In the satellite attitude control subsystem, there are three control loops from inner the BLDCM to the outer CubeSat: (1) the current loop of the actuator, (2) the angular velocity of the satellite body and (3) the attitude angle loop, which need to be regulated simultaneously. In this article, Matlab-Simulink is applied to construct dynamic mathematical models including the CubeSat body (kinematics, dynamics) module, the three-axis actuator module (BLDCM, reaction wheel), and the active controllers based on the actuator. Specifically, according to the multi-loop control architecture, individual loop controllers are designed through closed-loop system response simulation to complete the coupled cascades interaction between the satellite body and the reaction wheels. Among them, a ?P+PI? type control law is proposed, which can achieve precise attitude pointing in terms of time efficiency, stability and robustness as the system control requirements.


Keywords: Attitude, Attitude Control System, ACS, Low-Earth Orbit, LEO, Electromagnetic, EM, Actuator, Brushless Direct Current Motor, BLDCM, Reaction-wheel, Euler angle, Quaternions


Edition: Volume 10 Issue 5, May 2021,


Pages: 27 - 39


How to Download this Article?

Type Your Valid Email Address below to Receive the Article PDF Link


Verification Code will appear in 2 Seconds ... Wait

Top