Downloads: 116 | Views: 292
Survey Paper | Computer Science & Engineering | India | Volume 3 Issue 9, September 2014 | Popularity: 6.9 / 10
Survey on Categorization and Detection of Adaptive Novel Class of Feature Evolving Data Streams
Chaitrali T. Chavan, Prof. Vinod S. Wadne
Abstract: Classification in the data stream is the challenging fact for the data mining community. In this paper, we tackle four major challenges which are infinite length, concept drift, concept evolution, and feature evolution. As we know that the data streams are huge in amount, so practically it is not possible to store the data and used it for the training purpose. The results of changes in the underlying concepts are occurred because of concept drift, which is the general observable fact in the data streams. The result of new classes surfacing in the data streams occurs because of concept evaluation. The feature evaluation generally occurs in many streams like text streams, in text streams new features emerge as stream advancement. Many existing methods of the data stream classification tackle only first two challenges and ignore last two challenges. Here in this paper we proposed an ensemble classification skeleton, in which each classifier is prepared with a novel class detector to tackle the concept drift and concept evolution. We also proposed the feature set homogenization methods for feature evaluation. We improve the component of novel class detection by making it more adaptive to the evolving stream, and enable it to notice more than one novel class at a time. As comparing with the existing methods of the novel class detector method the efficiency of the proposed method is more than the existing one.
Keywords: Outlier, concept evaluation, novel class detection, concept drift, feature evaluation
Edition: Volume 3 Issue 9, September 2014
Pages: 1121 - 1123
Make Sure to Disable the Pop-Up Blocker of Web Browser
Similar Articles
Downloads: 0
Student Project, Computer Science & Engineering, India, Volume 11 Issue 6, June 2022
Pages: 1875 - 1880Microclustering with Outlier Detection for DADC
Aswathy Priya M.
Downloads: 2 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Research Paper, Computer Science & Engineering, India, Volume 12 Issue 6, June 2023
Pages: 1168 - 1174A Machine Learning Approach for the Diagnosis of Chronic Kidney Disease
Divya Pogaku, Sneha Bohra
Downloads: 2 | Weekly Hits: ⮙1 | Monthly Hits: ⮙2
Research Paper, Computer Science & Engineering, India, Volume 12 Issue 8, August 2023
Pages: 509 - 514Enhancing Lung Cancer Detection with Deep Learning: A CT Image Classification Approach
Jeevika K S, Dr. Savitha S K
Downloads: 6 | Weekly Hits: ⮙2 | Monthly Hits: ⮙2
Analysis Study Research Paper, Computer Science & Engineering, India, Volume 10 Issue 6, June 2021
Pages: 1825 - 1834Architecting Resilient REST APIs: Leveraging AWS, AI, and Microservices for Scalable Data Science Applications
Sai Tarun Kaniganti, Venkata Naga Sai Kiran Challa
Downloads: 71
Research Paper, Computer Science & Engineering, Sweden, Volume 9 Issue 12, December 2020
Pages: 1137 - 1139Predicting Diabetes using Gradient Boosting is a Machine Learning Technique
Ali Adam Mohammad