Downloads: 115 | Views: 291 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
M.Tech / M.E / PhD Thesis | Electronics & Communication Engineering | India | Volume 6 Issue 5, May 2017 | Popularity: 6.5 / 10
Software Based Biometric Liveness Detection using Convolutional Neural Network
Vidya Omanakkuttan, Sangeeta T.R
Abstract: Identifying a person based on some set of unique features is an important task. The human identification is possible with several biometric systems in which fingerprint and sclera recognition are the promising ones because of their individuality, uniqueness and reliability. A fingerprint image consists of a pattern of the valleys & ridges on human fingertips. The sclera is the white portion in the eye. The vein pattern seen in sclera and minutiae points in fingerprints is unique to each person. However the biometrics can be easily spoofed using several means. Pre-trained networks such as convolutional neural networks (CNN) can be explored for spoof biometric detection purpose. CNNs can achieve state-of-the-art performance even by training with natural images (such as animals, car, people etc. ). A software based approach is adopted in the work in which fake traits can be identified once the images are loaded and processed using software. Dataset Augmentation, process of increasing dataset, can be used to increase the classifiers (Support Vector Machine) performance. Single classifier is trained using all available dataset for improved accuracy and robustness.
Keywords: Minutiae points, sclera vein, convolutional neural networks
Edition: Volume 6 Issue 5, May 2017
Pages: 1028 - 1031
Make Sure to Disable the Pop-Up Blocker of Web Browser
Similar Articles
Downloads: 151 | Weekly Hits: ⮙1 | Monthly Hits: ⮙1
Comparative Studies, Electronics & Communication Engineering, India, Volume 9 Issue 6, June 2020
Pages: 750 - 753A Comparative Study on the Diagnosis of Skin Cancer using different Models in Deep Learning
Surya S Kumar, Dhanesh M S
Downloads: 3
Review Papers, Electronics & Communication Engineering, India, Volume 10 Issue 4, April 2021
Pages: 1349 - 1355Review on CNN based Sign Language Recognition Methods
Akash Vijayan, Sajeena .A