International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Call for Papers | Fully Refereed | Open Access | Double Blind Peer Reviewed

ISSN: 2319-7064


Downloads: 112

Myanmar | Computer Science | Volume 2 Issue 9, September 2013 | Pages: 104 - 108


Layering Based Network Intrusion Detection System to Enhance Network Attacks Detection

Yi, Mon Aye, Phyu, Thandar

Abstract: Due to continuous growth of the Internet technology, it needs to establish security mechanism. Intrusion Detection System (IDS) is increasingly becoming a crucial component for computer and network security systems. Most of the existing intrusion detection techniques emphasize on building intrusion detection model based on all features provided. Some of these features are irrelevant or redundant. This paper is proposed to identify important input features in building IDS that is computationally efficient and effective. In this paper, we identify important attributes for each attack type by analyzing the detection rate. We input the specific attributes for each attack types to classify using Nave Bayes, and Random Forest. We perform our experiments on NSL-KDD intrusion detection dataset, which consists of selected records of the complete KDD Cup 1999 intrusion detection dataset.

Keywords: security mechanism, Intrusion Detection System, Nave Bayes, Random Forest



Citation copied to Clipboard!

Rate this Article

5

Characters: 0

Received Comments

No approved comments available.

Rating submitted successfully!


Top