Downloading: CBIR-MSVM: Content-based Image Retrieval using Multi-Labelled Support Vector Machines
International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
www.ijsr.net | Most Trusted Research Journal Since Year 2012

ISSN: 2319-7064



Your Article PDF will be Downloaded in Next Seconds

M.Tech / M.E / PhD Thesis | Engineering | China | Volume 7 Issue 1, January 2018

CBIR-MSVM: Content-based Image Retrieval using Multi-Labelled Support Vector Machines

Justiner Joseph, Xuewen Ding

Content Based Image Retrieval (CBIR) technique is the emergent application to extract the appropriate query based images. But, the query based extraction is the one of complicated task for reducing the classification accuracy. To overcome these issue, proposed the CBIR based Multi-labelled Support Vector Machine classifier is used to enhance the classification outcomes. The preprocessing stage is processed into two main forms such as image resizing and the image filtering. In this framework, Gaussian Filtering technique is performed to remove the unwanted features and filter the relevant content based features. Then, three feature extraction process are as color, shape, and the texture feature are extracted based on the Color Histogram, REGIONPROPS, and the Grey Level Co-occurrence Matrix (GLCM). The Color Histogram technique is utilized to remove the unwanted RGB based structures from the results of preprocessed image and applying REGIONPROPS shape feature to extract the specific area and the perimeter based shapes. Then, performing GLCM texture based feature extraction to extract the statistical related features. Among the extracted features, the similarity computation process is accomplished to classify the content based images. Finally, MSVM classifier is processed to classify the content based pictures. The presentation result of the proposed framework is predicted with the help of parameters such as precision, specificity, recall, sensitivity, and the classification accuracy. Hence, the proposed research work is superior to the other existing techniques.

Keywords: Content Based Image Retrieval, Multi-labelled, Histogram, Texture feature, Shape, Color

Edition: Volume 7 Issue 1, January 2018

Pages: 191 - 196

Share this Article

How to Cite this Article?

Justiner Joseph, Xuewen Ding, "CBIR-MSVM: Content-based Image Retrieval using Multi-Labelled Support Vector Machines", International Journal of Science and Research (IJSR), https://www.ijsr.net/search_index_results_paperid.php?id=ART20179252, Volume 7 Issue 1, January 2018, 191 - 196



Top