Downloading: Extended Fuzzy C-Means Clustering Algorithm in Segmentation of Noisy Images
International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
www.ijsr.net | Most Trusted Research Journal Since Year 2012

ISSN: 2319-7064



Your Article PDF will be Downloaded in Next Seconds

Research Paper | Computer Science & Engineering | India | Volume 1 Issue 2, November 2012

Extended Fuzzy C-Means Clustering Algorithm in Segmentation of Noisy Images

Omprakash Dewangan, Asha Ambhaikar

A major problem in noisy image processing is the effective segmentation of its components. In this work, we are proposing an Extended Fuzzy C means clustering algorithm for noisy image segmentation, which is able to segment all types of noisy images efficiently. As the presented clustering algorithm selects the centroids randomly hence it is less sensitive, to any type of noise as compare to other clustering algorithms. And we will try to prove that Extended Fuzzy C means clustering converges to approximate the optimal solution based on this criteria theoretically as well as experimentally. Here we will also compare the efficiency of available algorithm for segmentation of gray as well as noisy images.

Keywords: FCM, Clustering, Image Segmentation, Image noise, EFCM

Edition: Volume 1 Issue 2, November 2012

Pages: 16 - 19

Share this Article

How to Cite this Article?

Omprakash Dewangan, Asha Ambhaikar, "Extended Fuzzy C-Means Clustering Algorithm in Segmentation of Noisy Images", International Journal of Science and Research (IJSR), https://www.ijsr.net/search_index_results_paperid.php?id=IJSR11120204, Volume 1 Issue 2, November 2012, 16 - 19



Top