Artificial Neural Network Modeling for Predicting Compaction Parameters based on Index Properties of Soil
International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
www.ijsr.net | Open Access | Fully Refereed | Peer Reviewed International Journal

ISSN: 2319-7064



Downloads: 139 | Weekly Hits: ⮙2 | Monthly Hits: ⮙17

Research Paper | Civil Engineering | India | Volume 4 Issue 7, July 2015

Artificial Neural Network Modeling for Predicting Compaction Parameters based on Index Properties of Soil

Ashwini Tenpe, Dr. Suneet Kaur

Compaction is simple ground improvement technique where the soil is densified through external compactive effort. The important parameters of compaction are Optimum Moisture Content (OMC) and Maximum Dry Density (MDD) which depends on the index properties of soil. Compaction increases the density of soil thereby, increasing shear strength and bearing capacity. These above parameters which are determined from laboratory tests are laborious and time consuming. However index soil properties test is relatively inexpensive, simple and can be performed within less time with utmost accuracy. In this research work, an attempt has been made to predict the compaction parameters from index properties of the soil in terms of Liquid Limit, Plasticity Index, soil particles finer than 75microns and greater than 75microns size. A feed forward neural network model is developed to predict the compaction parameters of the soil using index properties of the soil and the analysis is done by using Artificial Neural Network (ANN) methodology. Using this model, compaction parameters can be easily predicted by performing simple index properties tests in the laboratory. The R2 values of OMC of ANN model for training and testing dataset were found to be 0.8526 and 0.7568 respectively. The R2 values of MDD of ANN model for training and testing dataset were found to be 0.8801 and 0.8071 respectively. The R2 values of OMC and MDD for simulation dataset for this parameter are 0.9463 and 0.9478 respectively. Hence, it was proved that the developed neural network model can predict OMC and MDD with reasonable degree of accuracy.

Keywords: Optimum moisture content, maximum dry density, artificial neural network, index properties of soil

Edition: Volume 4 Issue 7, July 2015

Pages: 1198 - 1202

Share this Article

How to Cite this Article?

Ashwini Tenpe, Dr. Suneet Kaur, "Artificial Neural Network Modeling for Predicting Compaction Parameters based on Index Properties of Soil", International Journal of Science and Research (IJSR), https://www.ijsr.net/search_index_results_paperid.php?id=SUB156564, Volume 4 Issue 7, July 2015, 1198 - 1202

Enter Your Registered Email Address





Similar Articles with Keyword 'Optimum moisture content'

Downloads: 112 | Weekly Hits: ⮙2

Review Papers, Civil Engineering, India, Volume 6 Issue 11, November 2017

Pages: 1465 - 1468

Review Paper on Stabilization of Clay Soil Using RBI Grade-81

Sonam Rani

Share this Article

Downloads: 114 | Weekly Hits: ⮙6

Research Paper, Civil Engineering, India, Volume 6 Issue 3, March 2017

Pages: 1285 - 1289

A Study on Soil Stabilization using Cement and Coir Fibres

Deepakraja T.G, Charumol.S

Share this Article

Downloads: 117 | Weekly Hits: ⮙1 | Monthly Hits: ⮙9

Research Paper, Civil Engineering, India, Volume 5 Issue 9, September 2016

Pages: 1702 - 1707

Effect on Strength Characteristics of Expansive Soil Using Sisal Fibre and Waste Materials

Amrutha Mathew, Dr. Raneesh. K.Y

Share this Article

Downloads: 122 | Weekly Hits: ⮙1 | Monthly Hits: ⮙13

Research Paper, Civil Engineering, Nigeria, Volume 6 Issue 11, November 2017

Pages: 1098 - 1102

Effect of Waste PET Bottle Strips (WPBS) on the CBR of Cement-Modified Lateritic Soil

Adewale O. Olutaiwo, Ikechukwu I. Ezegbunem

Share this Article

Downloads: 125 | Weekly Hits: ⮙1 | Monthly Hits: ⮙7

Research Paper, Civil Engineering, India, Volume 8 Issue 8, August 2019

Pages: 846 - 852

Characteristic Properties of Bentonite Clay and use of Nanomaterials in Stabilizing its Expansive Behavior

Ashutosh Raj, Vidushi Toshniwal

Share this Article

Similar Articles with Keyword 'maximum dry density'

Downloads: 112 | Weekly Hits: ⮙2

Review Papers, Civil Engineering, India, Volume 6 Issue 11, November 2017

Pages: 1465 - 1468

Review Paper on Stabilization of Clay Soil Using RBI Grade-81

Sonam Rani

Share this Article

Downloads: 114 | Weekly Hits: ⮙6

Research Paper, Civil Engineering, India, Volume 6 Issue 3, March 2017

Pages: 1285 - 1289

A Study on Soil Stabilization using Cement and Coir Fibres

Deepakraja T.G, Charumol.S

Share this Article

Downloads: 117 | Weekly Hits: ⮙1 | Monthly Hits: ⮙9

Research Paper, Civil Engineering, India, Volume 5 Issue 9, September 2016

Pages: 1702 - 1707

Effect on Strength Characteristics of Expansive Soil Using Sisal Fibre and Waste Materials

Amrutha Mathew, Dr. Raneesh. K.Y

Share this Article

Downloads: 122

Research Paper, Civil Engineering, India, Volume 4 Issue 10, October 2015

Pages: 1586 - 1590

A Study on Improvement and Cost Effectiveness of Pavement Subgrade by Use of Fly Ash Reinforced with Geotextile

Brajesh Mishra

Share this Article

Downloads: 122 | Weekly Hits: ⮙1 | Monthly Hits: ⮙13

Research Paper, Civil Engineering, Nigeria, Volume 6 Issue 11, November 2017

Pages: 1098 - 1102

Effect of Waste PET Bottle Strips (WPBS) on the CBR of Cement-Modified Lateritic Soil

Adewale O. Olutaiwo, Ikechukwu I. Ezegbunem

Share this Article

Similar Articles with Keyword 'artificial neural network'

Downloads: 113 | Weekly Hits: ⮙2 | Monthly Hits: ⮙12

Research Paper, Civil Engineering, India, Volume 4 Issue 6, June 2015

Pages: 2863 - 2866

Artificial Neural Network: An Effective Tool for Predicting Water Quality for Kalyan-Dombivali Municipal Corporation

Rajesh R. Goyal, Hema Patel, S. J. Mane

Share this Article

Downloads: 115 | Weekly Hits: ⮙2 | Monthly Hits: ⮙9

Research Paper, Civil Engineering, India, Volume 3 Issue 7, July 2014

Pages: 290 - 293

Development of Artificial Neural Network Models for Estimation of Yield of Cotton

Pranav Mistry, Dr. T.M.V.Suryanarayana

Share this Article

Downloads: 118 | Weekly Hits: ⮙4 | Monthly Hits: ⮙10

Research Paper, Civil Engineering, Romania, Volume 4 Issue 12, December 2015

Pages: 1454 - 1457

Energy Consumption Prediction Analysis for the Retrofitting of an Urban Area using Artificial Neural Networks ? Case Study

D. S. Rusu

Share this Article

Downloads: 119 | Weekly Hits: ⮙1 | Monthly Hits: ⮙9

Research Paper, Civil Engineering, Romania, Volume 3 Issue 12, December 2014

Pages: 1398 - 1401

Prediction of Energy Consumption in Residential Buildings Before and After Retrofitting using Artificial Neural Networks

D. S. Rusu

Share this Article

Downloads: 120 | Weekly Hits: ⮙1 | Monthly Hits: ⮙8

M.Tech / M.E / PhD Thesis, Civil Engineering, India, Volume 5 Issue 10, October 2016

Pages: 1399 - 1401

Air Pollution Analysis for Kannur City Using Artificial Neural Network

Nayana Vijayaraghavan, Gayathri S Mohan

Share this Article



Top