Abstract: Features Extraction Effect on the Accuracy of Sentiment Classification Using Ensemble Models
International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Open Access | Fully Refereed | Peer Reviewed

ISSN: 2319-7064

Downloads: 138

Research Paper | Computer Science and Information Technology | Saudi Arabia | Volume 10 Issue 3, March 2021

Features Extraction Effect on the Accuracy of Sentiment Classification Using Ensemble Models

Faiza Mohammad Al-kharboush, Mohammed Abdullah Al-Hagery

A great number of works in sentiment classification have been developed, usually involving machine learning algorithms. The ensemble classifier is a subfield of machine learning that combines different base classifiers to form one powerful classifier. In the text classification, the ensemble classifier cannot process the text directly. Instead, it requires a feature extraction technique to convert the text to numeric forms. The extraction technique has great effects on the classification accuracy. The purpose of this paper is to enhance the accuracy of the ensemble classifier by defining the best feature extraction technique for the ensemble sentiment classifier. Hence, the accuracy of an ensemble model with three well-known feature extraction techniques, which are Bag of words (BOW), Term Frequency-Inverse Document Frequency (TF-IDF), Word2vec, are evaluated and analyzed on four experimental datasets. The ensemble classifier was composed of Support Vector Machine (SVM), Logistic regression (LR), k-nearest neighbor (KNN), and Random Forest (RF) as base classifiers. The analysis result indicates that using an ensemble classifier with TF-IDF delivered better classification accuracy than using BOW or word2vec. In contrast, the ensemble classifier usually reported its lowest accuracy with word2vec

Keywords: Features selection, Sentiment, Analysis, Ensemble models, classification accuracy

Edition: Volume 10 Issue 3, March 2021

Pages: 228 - 231

Share this Article

How to Cite this Article?

Faiza Mohammad Al-kharboush, Mohammed Abdullah Al-Hagery, "Features Extraction Effect on the Accuracy of Sentiment Classification Using Ensemble Models", International Journal of Science and Research (IJSR), https://www.ijsr.net/search_index_results_paperid.php?id=SR21303123511, Volume 10 Issue 3, March 2021, 228 - 231

Enter Your Email Address


Similar Articles with Keyword 'Analysis'

Downloads: 0

Research Paper, Computer Science and Information Technology, Kenya, Volume 10 Issue 6, June 2021

Pages: 1621 - 1628

Enterprise Resource Planning Integration and Performance of Safaricom Public Limited Company Kenya

Wambui Caroline, Tumuti Joshua

Share this Article

Downloads: 2 | Monthly Hits: ⮙1

Informative Article, Computer Science and Information Technology, India, Volume 10 Issue 5, May 2021

Pages: 139 - 140

Artificial Intelligence and Internet of Things in Diagnostic, Therapeutic, Operations and Data Analysis - Advantages and Disadvantages

Pragnyasa Swain

Share this Article
Top