Research on Recyclable Garbage Classification Algorithm Based on Attention Mechanism
International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
www.ijsr.net | Open Access | Fully Refereed | Peer Reviewed International Journal

ISSN: 2319-7064

Research Paper | Control Systems Engineering | China | Volume 9 Issue 10, October 2020

Research on Recyclable Garbage Classification Algorithm Based on Attention Mechanism

Wei Chen

With the rapid development of global productivity levels, the problem of garbage disposal is getting more and more serious. Garbage classification is an important step to realize garbage reduction, harmlessness and resource utilization. With the increase in types and quantities of garbage, traditional garbage classification image algorithms can no longer meet the accuracy requirements of garbage identification. This paper proposes a ResNet18 convolutional neural network model based on the attention mechanism for the classification of recyclable garbage. The attention module is added after convolution, so that the model can pay more attention to the important information in the feature map. The model can automatically extract the characteristics of garbage for classification, including: glass, metal, plastic and paper. Experimental results show that the algorithm has an accuracy rate of 92 % in the classification of recyclable waste, which can effectively classify recyclable waste.

Keywords: Recyclable garbage classification, Image classification algorithm, Convolutional Neural Network, Attention mechanism

Edition: Volume 9 Issue 10, October 2020

Pages: 1330 - 1333

Share this Article

How to Cite this Article?

Wei Chen, "Research on Recyclable Garbage Classification Algorithm Based on Attention Mechanism", International Journal of Science and Research (IJSR), https://www.ijsr.net/search_index_results_paperid.php?id=SR201017184643, Volume 9 Issue 10, October 2020, 1330 - 1333

32 PDF Views | 26 PDF Downloads

Download Article PDF



Top