International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Since Year 2012 | Open Access | Fully Refereed | Peer Reviewed

ISSN: 2319-7064




Downloads: 134 | Weekly Hits: ⮙1 | Monthly Hits: ⮙2

Research Paper | Neural Networks | Saudi Arabia | Volume 8 Issue 4, April 2019


Neural Network and Multiple Regression Models for PM2.5 Prediction in Rabigh, Saudi Arabia: A Comparative Assessment

Issam Mohammed Aquil Alghanmi | Ibrahim Abdelaziz | Al-Darrab | Osman Imam Taylan | Omar Seraj Aburizaiza


Abstract: A high concentration of fine particulate in the atmosphere has negative consequences for human health and wellbeing. Therefore, the prediction of the concentration of particles in atmospheric air is imperative so that the public is well aware of the atmospheric condition, and the standard of air quality can be properly managed. The research explores the feasibility of using neural network methods in replacement of the generally-used statistical models for prediction of the daily average concentration of PM2.5 (particulate matter having diameter & #8804; 2.5 um).24-h PM2.5 observation from May 6th to June 17th, 2013, at a specific spot in Rabigh city revealed high chronological changes with an average of (36.97 & #177; 16.22 ug/m3). The results showed that the concentration surpassed the limit specified by (WHO) guideline (25 ug/m3). Nine toxic Trace Elements (TEs) that are dangerous for human health were considered in this study, including (V, S, Lu, Ni, Cl, Zn, Cu, Pb, and Cr). These trace elements were found in abundance in PM2.5 (ug/m3). These trace elements were used as input and served as a basis for the formulation of NN models and (MLR) models. The research drew a contrast between the two models was found to be (2.017) - (10.596). The result showed that properly formulated and trained ANNs are effective in resolving the issues associated with for prediction cast of particulate pollution.


Keywords: PM25, ANNs, MLR, Rabigh


Edition: Volume 8 Issue 4, April 2019,


Pages: 500 - 508


How to Cite this Article?

Issam Mohammed Aquil Alghanmi, Ibrahim Abdelaziz, Al-Darrab, Osman Imam Taylan, Omar Seraj Aburizaiza, "Neural Network and Multiple Regression Models for PM2.5 Prediction in Rabigh, Saudi Arabia: A Comparative Assessment", International Journal of Science and Research (IJSR), Volume 8 Issue 4, April 2019, pp. 500-508, https://www.ijsr.net/get_abstract.php?paper_id=ART20196859

How to Share this Article?

Enter Your Email Address






Top