International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Open Access | Fully Refereed | Peer Reviewed

ISSN: 2319-7064


Downloads: 125

Research Paper | Aerospace Engineering | Yemen | Volume 8 Issue 1, January 2019


Forecasting of Time Series Using Fuzzy Logic and Particle Swarm Optimization Algorithm

Fuaad Hasan Abdulrazzak, Mahmoud Mahub Qaid Altyar


Abstract: During the last few decades, fuzzy time series have been developed so as to better the exactness of forecasting. In this study, we suggest a hybrid algorithm of fuzzy time series and particle swarm optimization (PSO) algorithm to solve the forecasting problem. Such algorithm is considered a very effective and a recent method. It is inspired by 'birds' flight and communication behaviors. The used algorithm assigns the length of each interval in the universe of discourse, and the degree of membership values, and updates weights. The selected data sets are used to clarify the suggested method, and then compare the forecasting exactness with another method, that used a hybrid model based on the statistical model (ARIMA) and Artificial Neural Network (ANN). The results show that the suggested algorithm is more exact in forecasting time series, and can compete well with other methods.


Keywords: Forecasting, PSO, Fuzzy Time Series


Edition: Volume 8 Issue 1, January 2019,


Pages: 1609 - 1613


How to Cite this Article?

Fuaad Hasan Abdulrazzak, Mahmoud Mahub Qaid Altyar, "Forecasting of Time Series Using Fuzzy Logic and Particle Swarm Optimization Algorithm", International Journal of Science and Research (IJSR), https://www.ijsr.net/get_abstract.php?paper_id=ART20193965, Volume 8 Issue 1, January 2019, 1609 - 1613

How to Share this Article?

Enter Your Email Address


Top