International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Call for Papers | Open Access | Double Blind Peer Reviewed

ISSN: 2319-7064

Downloads: 129 | Views: 137

Case Studies | Mechanical Engineering | India | Volume 6 Issue 2, February 2017

Experimental and Neural Network Based Investigation of External Scavenged Two Stroke S.I. Engine

Rahul D. Raut [2] | Kisan V. Wankhede | Suvarna V. Mehere | Kunal R. Kavitkar

Abstract: Two stroke spark ignition engines have high exhaust emissions and low brake thermal efficiency due to the short circuiting losses and incomplete combustion, which occur during idling and at part load operating conditions. To eliminate the short circuiting losses, new scavenging system has been developed. Here attempt is made to regulate the natural aspirated air for better fuel economy with increasing a speed and reduced emissions. In this project an attempt has been made to improve scavenging characteristic of two stroke engine. In the world, scientific studies increases day by day and computer programs facilitate the humans life. Scientists examine the humans brains neural structure and they try to be model in the computer and they give the name of artificial neural network (ANN). The purpose of this study is to estimate fuel economy of an automobile engine by using ANN algorithm. Engine characteristics were simulated by using Neuro Solution software. This study deals with artificial neural network (ANN) modelling of a two stroke scavenging to predict the characteristics of the engine. To acquire data for training and testing the proposed ANN, two stroke engines operated at different loads. Using some of the experimental data for training, an ANN model based on feed forward neural network for the engine was developed. Then, the performance of the ANN predictions were measured by comparing the predictions with the experimental results which were not used in the training process. It observed that the ANN model can predict the engine characteristics quite well with correlation coefficients, with very small errors. This study shows that, as an alternative to classical modelling techniques, the ANN approach can be used to accurately predict the performance of internal combustion engines.

Keywords: Scavenging, Artificial neural network ANN, BSFC, Short circuiting losses, Neuro solution, and Brake Power

Edition: Volume 6 Issue 2, February 2017,

Pages: 1117 - 1124

How to Download this Article?

Type Your Email Address below to Download the Article PDF

How to Cite this Article?

Rahul D. Raut, Kisan V. Wankhede, Suvarna V. Mehere, Kunal R. Kavitkar, "Experimental and Neural Network Based Investigation of External Scavenged Two Stroke S.I. Engine", International Journal of Science and Research (IJSR), Volume 6 Issue 2, February 2017, pp. 1117-1124,

Similar Articles with Keyword 'BSFC'

Downloads: 113

Research Paper, Mechanical Engineering, India, Volume 4 Issue 11, November 2015

Pages: 1343 - 1349

Performance and Emissions Characteristics of Cotton Seed Oil Biodiesel Blend in CI Engine using Artificial Neural Network (Back Propagation)

R. Ramachandra [7] | V. Pandu Rangadu

Share this Article

Downloads: 129

M.Tech / M.E / PhD Thesis, Mechanical Engineering, India, Volume 7 Issue 12, December 2018

Pages: 1004 - 1008

Performance and Emission Characteristics of Hongebiodiesel Fueled CI Engine by using Taguchi Method

Shreyas.V | Lohith.N

Share this Article