International Journal of Science and Research (IJSR)

International Journal of Science and Research (IJSR)
Since Year 2012 | Open Access | Fully Refereed | Peer Reviewed

ISSN: 2319-7064




Downloads: 210

Survey Paper | Computer Science & Engineering | India | Volume 6 Issue 1, January 2017


Efficient Seed and K-Value Selection in K-Means Clustering using Relative Weight and New Distance Metric

Premsagar Dandge | Aruna Gupta [6]


Abstract: K-mean clustering algorithm is used for clustering the data points which are similar to each other. K-means algorithm is popular due to its simplicity and convergence tendency. The general distance metrics used this algorithm are Euclidian distance, Manhattan distance etc. which are best suited for numeric data like geometric coordinates. These distance metrics does not given full proof results for categorical data. We will be using a new distance metric for calculating the similarity between the categorical data points. The new distance metric uses dynamic attribute weight and frequency probability to differentiate the data points. This ensures the use of categorical properties of the attributes considered while clustering. The k-mean algorithm needs the information about number of clusters present in the dataset in advance before proceeding for cluster analysis. We will be using a different technique for finding out the number of clusters which is based on the data density distribution. Also the initial cluster seeds are selected in a random fashion which may lead to more iteration required for convergent solution. In proposed method, seeds are selected considering the density distribution which ensures the even distribution of initial seed selection. This will reduce the overall iteration required for convergent solution.


Keywords: k-means clustering, categorical data, dynamic attribute weight, frequency probability, data density


Edition: Volume 6 Issue 1, January 2017,


Pages: 2084 - 2087

Efficient Seed and K-Value Selection in K-Means Clustering using Relative Weight and New Distance Metric


How to Cite this Article?

Premsagar Dandge, Aruna Gupta, "Efficient Seed and K-Value Selection in K-Means Clustering using Relative Weight and New Distance Metric", International Journal of Science and Research (IJSR), https://www.ijsr.net/get_abstract.php?paper_id=ART20164290, Volume 6 Issue 1, January 2017, 2084 - 2087, #ijsrnet

How to Share this Article?

Enter Your Email Address




Similar Articles with Keyword 'categorical data'

Downloads: 107

Research Paper, Computer Science & Engineering, India, Volume 3 Issue 11, November 2014

Pages: 1503 - 1509

Automatic Clustering Subspace for High Dimensional Categorical Data Using Neuro-Fuzzy Classification

R. Mahalingam | S. Omprakash [2]

Share this Article

Downloads: 119

Survey Paper, Computer Science & Engineering, India, Volume 3 Issue 12, December 2014

Pages: 1188 - 1192

Outlier Detection Based on Surfeit Entropy for Large Scale Categorical Data Set

Neha L. Bagal

Share this Article


Top