Recent Innovations in Science and Engineering - RISE 2016
30™ April 2016

How Developer’s Code Aids in Slower Rendering
of Webpage

Shekhar Gupta®

!Department of Information Science
PESIT-Bangalore South Campus, Bangalore, India

Abstract: In today’s era of Internet based society with slower browsing speed, everyone wanted webpage on the go. While
researchers & communities are streamlining on performance optimizations at atomic level, its sole duty of developers to write
efficient code for faster rendering of webpage & limited battery consumption. This paper presents hidden malicious code sections
responsible for slower loading of webpage. Our survey from Chrome Tools done on various sites depicts how our proposed technique
speeds up the webpage rendering by 21%-49%. Even though factors like selection of proper hosting plans, browser caching &
facilitating CDN goes long way for seamless user experience. Apart from it, this paper brings out some business strategies for

ranking your page so as to have more hits for monetization!

Keywords: CDN (Content Delivery Network)

1. Introduction

In today’s smartphone dominant society, unpleasant user
experiences not only occur due to application, database,
servers and infrastructures tuning but also due to the time it
takes to render the web page and displaying its contents to
the end-user. In 90’s website performance optimization
means optimizing server-side as most web sites were static
(only HTML document) and almost all the computations was
done on server side. With Web 2.0 technologies, wherein
web applications are becoming more & more dynamic, client
side processing are even more critical from performance
perspectives because they have proven to be more impactful
on user experience.

Researchers at Yahoo revealed that on average only 10-20%
of total page loading time is spent on the back-end and
remaining 80-90% time is spent on the front-end. Even the
web analysts proposed that client (user) side should be
prioritize as well besides server side processing. The
complex architecture of Web application forces the
performance engineers to rethink & rebuild the optimization
strategies for performance testing. The statistics revealed
while improving the back-end performance by 50% boosts
the overall application performance up to 10% while
application performance can be tuned by 40% by reducing
the front-end time to half.

ek Browser

Weh Server

Database Server
% Presentation layer

MySOL database
[Database inerface % Log file

Figure 1: The block diagram showing the various
components interaction in sandboxed mannerism [7]

The advantage for front-end performance optimization is that
it’s quite simple and cost effective as compared to back-end
performance optimization wherein the developers are
redesigning application architecture, adding or modifying
hardware, distributing computations etc.

2. ldentifying the Hidden Malicious Code
Sections

What exactly are hidden malicious code sections? Well, there
is no such set standard for the same, that’s wherein the
researchers & analysts come to play. To break it down these
are modules of the code which hinders the loading of the
webpage. This happens when the developer just make the
things happen, without considering the after-effects. Let’s
look at some of the those critical sections.

A. CSS Expression

We know that CSS (Cascading Style Sheet) helps in
rendering the plain boring HTML document dynamically. To
elaborate let us take an example of the CSS expression which
sets the background color after every 30 minutes. CSS
expressions are evaluated very frequently and they are
evaluated whenever any user action is performed. They are
evaluated when the page is rendered and resized, page scroll
down and even on mouse hover. They are so frequently
evaluated even on moving mouse around the page can
generate more than 10,000 evaluations. So one can predict
the amount of computations one can pose if even single-lined
CSS expression is not managed properly!!

B. JavaScript Libraries

With increasing number of websites using active code, the
available programs are becoming larger and more complex.
These programs make extensive use of JavaScript libraries
and asynchronous communication, which results in larger
programs thereby increasing workload on the browser. These
applications provides greater interaction via asynchronous
communication with a server. This allows programs to fetch
and display new data without requiring full-page refresh.

PES Institute of Technology, Bangalore South Campus, Bangalore, India
www.pes.edu

Recent Innovations in Science and Engineering - RISE 2016
30™ April 2016

For the quantification of wuse of asynchronous
communication, we checks Alexa data sets for the website
using XmlHttpRequest (XHR) class in JavaScript. The
amount of code distributed with each map site while
displaying the 560100 zip code shows 23.9 KB of code for
traditional sites and 234 KB for interactive sites.

C. Amount of Additional Resources
Web pages are bigger than ever. According to the HTTP
Archive, the average Web page contains more than 1 MB

along with 80 resources such as images, sprites, JavaScript,
CSS (Cascading Style Sheets) files, etc.

Average Bytes per Page by Content Type

B iotal 522 kB

Figure 2: The average bytes distribution per page based on
the various resources or contents present in any given
webpage.

Only 20% of the time is required to display typical Web page
by loading the HTML portion of the website. The remaining
80% is spent for loading the additional resources needed to
render the page - including style sheets, script, files and
images and performing client-side processing.

D. Browser’s Concurrency

There’s no assurance that even if our code is fully optimized
& reliable, the user experience would be wonderful, even
though all optimizations are done. It may be awful! This
factor is attributed to the browser’s three factors.

1)Poor isolation mechanism- One web application executing
within the browser can interfere with another application
with bug in that application.

2)Scheduling starvation- When one overly aggressive
application prevents others from running.

3)Memory starvation- The memory consumption of one
application prevents others applications from making good
forward progress. Therefore, for us as developers how
much pathetic it would be if we are crashing other’s
application.

3. Detection of Malicious Code Sections

For these never-ending problems web communities conducted
loads of experiments, to conclude the importance of one
parameter over the other, so that developers need not to worry
about everything, but only something!!

e e

T Tt Qs (§ fnished il
et itated 4308 GAT 1401 201 dahes (4 TSN
s beter than 8k of
locaton: moltHocationmeboge test
illvbsles

frcwier kel Exlover 5}
Comathity: Default6enbos to44mbs, ey)
Frantind usér expirlenc §) Backind performiance) Content complentty]
T o 2290ms Teolstye 568 ms ot 474KB

Tinelsee) T e} Qustlty e Qurtty Sl
Tire o il WOm DNSumE G Reguens) 1) n uE
T o ar e 1507m Comectlime: d0m Doaing 1 Images | 1L
T lodiply i Watngtime i W 1L M 0 L}

TimetoFr e m leallgt 4 M (b 10 1

Figure 3: The timing disribution of webpage rendering for
serving frontend, backend & content download

A. Google’s page reduction

Google experimented with showing 30 results/page instead
of 10 results/page. In this experiment, Google’s traffic and
revenue dropped by 20 percent apparently since the pages
with more results took just half-second more to load.

B. Threshold webpage response time

In 2009, the studies by Forrester Research by Akamai
identified two seconds as the threshold value for acceptable
webpage response times and proposed that 40 percent of
consumers abandon a page that takes longer than three
seconds to load.

C. Network strength

A study conducted over 200 leading e-commerce sites by
Strange loop Networks found that the median load time was
11.8 seconds over 3G while performance over LTE only at
8.5 seconds.

D. DNS Lookups

According to Yahoo Developer Network Blog, it took about
20-120 milliseconds for DNS (Domain Name System) to
resolve IP address for a given hostname or domain name and
the browser cannot do anything until the process is properly
completed.

4. Best Suggestions, Tips & Tricks

Let’s look at the better side of the web development phase
wherein best tips, tricks & suggestions are proposed. This
portion suggests that how the placement of code sections
within the webpage makes tremendous impacts!!

A. Placement of Style Sheet: Yahoo researchers discovered
that putting the style sheets to the document HEAD enables
the browser to render progressively and it makes the page
loading faster. The core idea behind it’s that rather than
letting the user to wait for rendering all the page elements
and glancing at white screen, it would bring out good user
experience to display webpage to see the page components

PES Institute of Technology, Bangalore South Campus, Bangalore, India
www.pes.edu

Recent Innovations in Science and Engineering - RISE 2016
30™ April 2016

gradually instead of waiting and then viewing all the
components suddenly.

Few modern browsers including IE doesn’t perform the
progressive rendering on web page components on putting
the style sheets at the bottom and frustrate the user with
blank page!!

B. Minification: The removal of unnecessary characters &
all the additional sources like comments, new line
commands, metadata, white spaces, new line commands etc.
from the code is called minification. It results in reduction of
web page size and downloads time for that webpage.

1] JavaScript Minifier (= | (=
Cl Compress % Copy Text ¥ Open Folder % Exit
Input File [.iz file or *.js for batch conversion]: -
C:\wWestwind TimeT rakkertscripts'wui datepick erwi. datepicker. s -

Output File [if left out files are automatically created with .min.js extenzion)
C:\westwinds TimeT rakkerscriptsui datepick erwi. datepick er. min. j

{functioni$){ function Datepicker(){this.debug=false;this._nextId=0;this._in
e,calenlatelieck: this. iso2601 ek, shortYearCutof£: '+10' ,minDate:mill maxDate
ak;case 33:%.datepicker._adjustDate{inst, le.ctrlRey?-1:-inst._get{'stepMont
ar sppendText=inst._get | appendText');ifiappendText){input.after('<span cla
dClazs (this.markerClassName) . append{inst. datepickerDiv);inpuc [0]. calld=in
.pageT]):inulll;if{lthis._pos){var viewportWidth;var viewportHeight:if(winda
log')ithis. showForithis. dialegInpuc[0]):;if(¢ .blockUI) {§.blockUL (chis. _date
netion{input) {input={input_ jguery?input [0] : itypeof input=='string'?$ (input})
;var imput=icontrol.nodellamesicontrol. nodeNane. tolowerCase () =="input'?conty
nst._get{'speed');var postProcess=function(){#.datepicker. datepickerZhowin
ocunent . docunentElenentdd (docunent . docunentElemert . scrollleft)) {browserd=do
t;}ourtopt=cbj.offsecTop; }jrecurnfcurleft curtopl;} hideDatepicker: function
~target);if{{target parents("fdatepicker_div"} length==0}&4 (target attri'cl
Names=inst._get ('dayNames') ;wvar walue=a. firstChild.nodeValue; for (var i=0;1<
Day=inst._rangeftart.getDate();inst._selectedMonth=inst. currentMonth=inst._

Figure 4: It shows the minification of Java Scripts with
compression reduction 33.19% [8]

C. Image Optimization: Image loading time is one of the
major performance issues affecting page load on mobile
devices. The use of online image optimizers, such as
smushit.com & choosing the appropriate file format would
help. Normally JPG image format is used with high number
of colors while PNG is best suited for rendering text and for
images with alpha transparency.

D. Using Content Delivery Networks: A content delivery
network (CDN) is a collection of web servers distributed
across various locations all around the world to provide web
contents in an efficient manner. Based on lesser number of
network hope counts, user request should be entertained
from the closest web server.

If the application is deployed on a single place, it can greatly
affect users experience for accessing the application from
longer distance due to network delays. User response time
can be greatly improved by just redistributing static web
contents over various locations instead of redesigning the
application to distribute the dynamic contents.

Some large internet companies have developed their own
CDN but it’s not cost effective decision for
smaller companies so there are various CDN service
providers in market whose services can be used to optimize
the end user response time.

E. Minimizing the HTML Requests: An HTTP request is
used to fetch root HTML document that may refer to other
page resources like images, scripts and style sheets. Each of
these resources must be fetched with HTTP request.
However, every HTTP request adds performance overhead
since it creates network traffic between the client and server.
Reducing the number of resources will decrease the HTTP

requests required to render the web page and will improve
the performance.

Looking up your domainname: 172 Time to Titie 802
Cannecting [o your datacenter. 249 melo First Pant. 2,22
Downloading your himi page: 587 Time to Display 1.64
Acset Caunt 18 ot 4.09
Domairs 6 481.3

Figure 5: The timing distribution for miscellaneous
activities [9]

F. Use image sprites: This technique enables to combine
several images into one and use CSS to show only the part of
the image that’s needed. When you combine five or ten
images into a single file, already you’re making savings in
huge overheads for requests & response.

The process of combining all the scripts and style sheets into
a single script and style sheet respectively is a challenging
task but would greatly help in achieving the desired goal on
performance optimization.

G. Turnoff Entity Tags: Entity tags (ETags) are used for
validation in updates for browser cache data. These tags
compares the browser cached copy with the one on server
cache side to make sure browser has updated data. These
tags have limitations that it only compares the browser cache
with unique server. All works fine when there is only one
hosting server while it won’t work in situation wherein
application is hosted on multiple servers and browser gets
the components from one server and validates the same on
another server. The generation of ETags is achieved through
I1S and Apache so the same components don’t match from
one server to another and user ends up in receiving 200
response code rather than small, fast 304 response.
Therefore, the ETags are turned off when the application is
hosted on multiple servers.

H. Use the Expires Header: The static assets in code should
be exactly static for better performance. Therefore, there
should be no dynamically generated scripts, styles or
tags pointing to scripts that generate dynamic images. For the
dynamic generation of graphics containing visitor’s
username, result is cached as a static image. This image is
replicated once when member signs up & then images gets
stored on the file system and the path to the image in
database is written. Static assets allows to set Expires header
for those files to near-future date, so that once assets are
downloaded, it’s cached by the browser and never requested
again.

The Expires header in Apache can be enabled by adding .ht
access file containing the following directives:

Expires Active On: This directives enables generation of the
Expires header.

Expires Default “modification plus 1 month”: This directive
sets the expiration date to one month after file’s modification
date.

I. Code compression: The processes of compression of
JavaScript and CSS files potentially have significant impact
on performance. For compression refresh-sh.com can be
utilized as tool as all modern browsers support compression

PES Institute of Technology, Bangalore South Campus, Bangalore, India
www.pes.edu

Recent Innovations in Science and Engineering - RISE 2016
30™ April 2016

& compressed resources. All HTML, JS, CSS and XML
documents can be compressed on server side before
transferring to the web browser wherein decompression of
these documents happens before displaying them to end user.
Compression can be easily enabled on most of the web
server through some basic configurations. The binary files
like images, PDF and SWF should not be compressed again
because compressing the already compressed elements
would waste CPU utilization and can also increase the file
size as well.

J. Make JavaScript and CSS as External files: The
JavaScript and CSS files are cached by the browser so
enabling them as external files makes the page response time
faster. These files are in lined with HTML document &
because of external files caching is achieved with number of
HTTP requests remains the same.

K. Use Post-load Pre-loading and Inline Assets: We use
HTML for content, CSS for presentation and JavaScript for
behavior. These assets are kept in separate files for better
performance. However, homepage must be the fastest page
on website as visitors may escape our site, irrespective of its
contents, if homepage is slower to render. With empty
caching on first-time visit, if only one request serves the
purpose its optimized solution. This way of Post-load Pre-
loading loads the components in the background after the
home page has loaded.

Suppose home.html is homepage & mystuff.js being
JavaScript file. Upon placing mystuff.js inline with
home.html the request behind-the-scenes is achieved.
Henceforth, when user hits one of the content pages, caching
is done.

a) new Image().src = ‘image.png’; For preloading of image
wherein the image is requested but never used

b) Creating new <script> for preloading JavaScript files

var js = document.createElement(‘script’);

js.src = ‘merasite.js’;
document.getElementsByTagName(“head’).appendchild(js);

5. Online Tools & Web Optimizers

With rapid advancement in tech are we going to do all these
optimizations? Obviously no, it’s not possible technically!
Before few years it wasn’t feasible for web developers to
figure out what’s happening after submission of user’s
request on browser.

There are 100’s of tools & web-optimizers online wherein
we can just put our code & everything is done for us!

1) They offer suggestions for improving page's performance.
2) They grades web page based on predefined rule sets or
user-defined rule set.

3) It summarizes the web page's components.

4) It displays statistics about the web page.

The top-notch & most used ones includes Page Speed,
FireBug, Yottaa.com, Y-Slow & Webpage Test

A. Page Speed: It is an open source Firefox/Firebug ad-on
launched by Google for evaluating the web pages. It provides
suggestions for minimizing web page loading time. In this

service, webpages routes through Google server and
algorithms are applied for making them more efficient and
faster. This makes webpage retrieval faster when users
access those pages through Google search engine

2 %

e S il console HTIML C5S Soript DM Ha

| Ana‘lyze Performance Show Resources Export Hesulis
Owverall performance summary: /.
* Leverage browser caching
Minify CSs - -
! Parallelize downloads across hostnar‘nes
Minify JavaScript
Specify image dimensions
Remowve unused CSS
Serve static content from a cookieless domain
Put CSS in the document head
Use efficient CSS selectors
Enable gzip compression
Combine external JavaScript

Figure 6: The various optimization categories available in
tool

442D RPPDPOOO

FEHERHEREBRR

B. Y-Slow: Y-Slow is browser plug-in from Yahoo for
testing the web page against various optimization rules
defined by Yahoo performance team. It recommends best
suggestions & tips for web page optimizations.

C. Webpage Test: It’s a free online service providing the
facilities of front-end speed test for websites. The speed of
sites can be tested out on all the famous web and mobile
browsers from different geographical locations thereby
providing detailed information on all the application
components which can be helpful in application
optimization.

D. Firebug: Its browser plug-in providing various services
including debugging of front end development, tracking of
all the network requests and profiling JavaScript function
calls. For most of the developers it’s their most preferable
tool for client side performance evaluation.

hlsiteTithe - dv.contentiner - dv.contentinner] - dev.contentinnerd < di |54, b
HTHL | (S5 Script DOM Net Optons= | Style | Layoul DOM Optang =

|| E—— shaetess (line 103) A

{‘ gt
shesLess (line 10)

| tnhersted from s:vtconzans
sheetcss (line 122)

ant lefe;

" A A e e R e S Rk)_ Eriri ey

Figure 7. It shows the probabilistic malicious code section in
HTML, CSS & JavaScript

E. AgileLoad Script Editor: It captures and analyses all the
requests performed between user and application for building
test scenarios. The validation of scripts generated by
replaying and comparing each request with initial scenarios
is done by Replay function. The graphical bar chart shows
the time spent for primary requests and overall response
times and details of all resources loaded, the time spent for
each resources, the detailed HTTP response associated with
each HTTP request.

F. Yottaa: Its web optimization solution providing web
applications Yottaa performance score and identifies areas
contributing most to the application performance.

PES Institute of Technology, Bangalore South Campus, Bangalore, India
www.pes.edu

Recent Innovations in Science and Engineering - RISE 2016
30™ April 2016

6. The After-Effects of Browser

Web browser remains the most important applications on
devices for connecting to Internet. Researchers and industry
organizations propose various methods to build a better web
browser.

A. Parallelization: This process helps in parallelizing the
computation-intensive steps in webpage processing making
browser more responsive and energy-efficient. The designing
of parallel web browsers and algorithms for parallelizing
each browser component, including parallelization of
frontend, page layout and scripts.

B. Effective Caching: The caching mechanism used in web
browsers typically is caching the web resources including
HTML data, pictures, CSS and JS files. Smart Caching
caches intermediate results for style formatting and layout
calculation stages, henceforth the cached data can be applied
in subsequent processing of same data for avoiding repetition
of local computations. It reduces overhead for redundant
calculations while revisiting the same webpage.

C. Webpage Prefetching.: It attempts for prediction of which
webpages user may visit in near future and downloading the
predicted webpages before actual visits so the browser can
use resources preloaded locally on correct prediction. In
Pocket-Web the visiting history of user is used for training
the user access model via machine-learning approach.

D. Speculative Loading: It looks for those webpages in same
website sharing common web resources. The predicted
resources are loaded along with main resources, thereby
saving round-trip-time. It utilizes similarities between
webpages for speeding up resource loading

E. Cloud-Based Optimizations: The cloud acts as an agent
for web browser and all requests between the web server and
the mobile browser passes through the clouds thereby pre-
processing and compression of web contents is done before
sending the results to web browsers.

7. Conclusion

Well there seem no upper boundaries for optimizations! With
advancement in technologies, increasing number of libraries
& resources poses problem on client side & server side.
Sometimes, only the difference in browsers makes huge
impact on user experience. As developers, there are limitless
numbers of hurdles which are mandatory on their part.
Therefore, we as developers shouldn’t just move on by
coding endlessly rather should pose an optimized solution for
bringing in the seamless user experience.

References

[1] Kaimin Zhang, Lu Wang & Aimin Pan, Bin B. Zhu
Issue no. 11 “Smart Caching for Web Browsers”

[2] CSS tricks www.css-tricks.com

[3] Haoyu Wang, Mengxin Liu, Yao Guo & Xiangqun Chen
“Similarity-based Web Browser Optimization”

[4] Front End Performance Testing & optimizations
www.agileloads.com

[5] Trevor Jim, Nikhil Swamy &Michael Hick “Defeating
Script Injection Attacks with Browser-Enforced
Embedded Policies”

[6] Charles Reis, Brian Bershad, Steven D. Gribble and
Henry M. Levy “Using Processes to Improve the
Reliability of Browser-based Applications”

[7] Deployment Diagram: http://laurentparenteau.com/blog

[8] JavaScript Minification:
https://blog.mastykarz.nl/content

[9] Timing distribution: http://volumatrixgroup.com/wp-
content

[10] Kavindra Kumar
“Optimizing the
Application”

Singh & Dr.
Performance of

Praveen Kumar
Mobile Web

PES Institute of Technology, Bangalore South Campus, Bangalore, India

www.pes.edu

http://www.css-tricks.com/�
http://www.agileloads.com/�
http://laurentparenteau.com/blog�
https://blog.mastykarz.nl/content�
http://volumatrixgroup.com/wp-content�
http://volumatrixgroup.com/wp-content�

