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Abstract: Utility mining is a growing trend in data mining area. Most of the works on utility mining adapts a two phase candidate 

generation approach that is however inefficient. High utility item set refer to the set of items with high utility for example, profit in a 

database. To identify high utility item sets, most of the algorithms first generate candidate item sets by estimating their utilities, and then 

compute their exact utilities. This two phase approach has scalability issue due to the large number of candidates that it generates. This 

approach raises the problem that a large number of candidates are generated, but most of the candidates are found not to be high utility 

after their exact utilities were computed. This paper proposes a method that finds high utility patterns in single phase. All the item sets 

having a utility meeting a user specified minimum utility threshold are discovered. However, setting the threshold value is a difficult 

problem for users. If the threshold is set too small, a huge number of item sets will be generated. On the other hand, if it is set too high, 

no item sets will be presented for the users. This paper also address this issue by proposing a framework for top k high utility item set 

mining, where k is the desired number of high utility item sets to be mined.     
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1. Introduction 
 

The rapid development of database technique facilitates the 

storage and usage of massive data from various 

organizations. How to obtain valuable informations from 

various databases has received considerable attention that 

result in the rise of related research areas. Among these, the 

item set mining problem is most important and that drives 

from the frequent item set mining problem. 

 

Finding interesting patterns has been an important data 

mining task, and it has got a variety of applications. For 

example, genome analysis, cross marketing, condition 

marketing etc., where interestingness measures play an 

important role. Mining frequent item sets is to identify the 

set of items that appear frequently in transactions. The 

frequency of an item set is measured with the support of the 

item set ie., the number of transactions containing the item 

set. If the support of an item set exceeds a user specified 

minimum support threshold, the item set is considered as 

frequent. Most of the frequent item set mining algorithms 

employ the down word closure property of item sets. That is, 

all super set of an infrequent item set are infrequent and, all 

sub set of a frequent item set are frequent. This property 

provides the algorithms with a powerful pruning strategy. In 

frequent pattern mining, once an infrequent item set is 

identified, the algorithm need not to check the super set of 

that item set. Mining of frequent item sets only takes in to 

account, the presence and absence of items. Other 

information about the item is not considered, such as the 

independent utility of an item and the context utility of an 

item in a transaction. In a super market database, each item 

has a definite price/profit and each item in a transaction is 

associated with a distinct count which means the quantity of 

the item one bought. 

 

Frequent item set mining is a fundamental research area in 

data mining. However, the traditional frequent item set 

mining techniques may discover a large amount of frequent 

but low-value item sets. And they loss the information on 

valuable item sets having low selling frequencies. Hence, it 

cannot satisfy the requirement of users who want to discover 

item sets with high utilities such as high profits. With 

frequent pattern mining an item is considered to be frequent 

if its occurrence frequency exceeds a user specified 

threshold. For example, mining frequent patterns from a 

shopping transaction database refers to the discovery of 

products that are frequently purchased by a customer. 

However, a user’s interest may relate to many other factors 

that are not related to occurrence frequency. For example, a 

super market manager will be interested in finding products 

with high profits that are related to unit profit and purchased 

quantity, that are not considered in frequent pattern mining. 

 

Utility mining was emerged recently to address the 

limitations of frequent pattern mining by considering user’s 

expectation as well as the raw data. Like frequent item sets, 

item sets with utilities not less than a user specified 

minimum utility threshold is generally valuable and 

interesting, and they are called high utility item sets. The 

downward closure property of item sets no longer exist for 

high utility item sets. When items are added to the item set 

one by one, the support of item set monotonously decreases 

or remains unchanged, but the utility of item set varies 

irregularly. 

 

Most of the utility mining algorithms adopt a two phase, 

candidate generation approach, that is, first find candidates 

of high utility patterns in the first phase, and then scan the 

raw data one more time to find high utility patterns from 

thecandidates in the second phase. In the second phase, the 

algorithms compute the exact utilities of candidates by 

scanning the database. The challenge is that number of 

candidates can be huge, which is the scalability and 

efficiency bottleneck. It also creates problem when the raw 

data contains many more transactions or the minimum utility 

threshold is small. The large number of candidates issue not 

only in the first phase but also in the second phase. This 

paper proposes a method that finds high utility patterns in 

single phase. 
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Even though many methods have been proposed for high 

utility mining, it is difficult for users to choose an 

appropriate minimum utility threshold. Depending on the 

threshold, the output size can be either small or large. If the 

threshold is set too small, large number of high utility item 

sets will be displayed to the user. Such a large number of 

high utility item sets may cause the mining algorithm 

inefficient. It may also leads to run out of memory. Because, 

the higher utility item sets the algorithm produce, the more 

resources they consume. On the other hand, if the threshold 

is set too high, no high utility item sets will be generated. To 

find an appropriate value for the minimum utility threshold, 

the user needs to guess and repeatedly run the algorithm. 

This process is both inconvenient and time consuming. To 

discover the high utility item sets without defining the utility 

threshold is to redefine the task of high utility item sets 

mining as mining top k high utility item set, where k is the 

number of desired number of item sets that the users want to 

find. The idea is to let the user specify k, instead of 

specifying the minimum utility threshold. And also, choosing 

the threshold primarily depends on the database 

characteristics that are often unknown to users. This paper 

also proposes a framework for mining top k high utility item 

sets, where k is the desired number of item sets to be mined. 

 

2. Related Works 
 

High utility pattern mining is related to frequent pattern 

mining and constraint based mining. This section briefly 

describes prior works on both of these areas and how they 

connect to the proposed method.     

 

2.1   Frequent pattern mining 

 

Frequent pattern mining was first introduced by Agarwal et 

al, [3]. It discovers all patterns whose support are not less 

than a user specified support threshold. Frequent pattern 

mining employs the anti-monotonicity property: the support 

of the super set of a pattern is no more than the support of the 

pattern. Frequent pattern mining algorithm as well as high  

utility pattern mining algorithms fall into three categories, 

breadth-first search, depth-first search and hybrid search. 

Apriori by Agrawal and Srikant [4] is a breadth-first 

algorithm for mining frequent patterns. FP-growth by Han et 

al, [5] is a depth-first algorithm. It compresses the database 

by FP-trees in main memory. Eclat by Zaki [6] is a hybrid 

algorithm that keeps a database in memory by a vertical tid-

list layout [8], and can work either in depth-first or breadth-

first manner. 

 

As the breadth-first strategy is more memory intensive, it is 

used in this paper.    

 

2.2   Constraint based mining 

 

The constraint based is a milestone from frequent pattern 

mining to utility mining. Many of the works on this area 

mainly focus on how to push constraints into frequent pattern 

mining algorithm. Bucila et al. [9] considered mining 

patterns that satisfy both anti-monotone and monotone 

constraints, and presented an algorithm, DualMiner, that 

efficiently reduces its search space using both anti-monotone 

and monotone constraints. 

De Raedt et al. [10] investigated how constraints based 

method can be applied to constraint based mining problems 

with constraints that are monotone, anti-monotone and 

convertible. Bayarado and Agrawal [11] and Morishita and 

Sese [12] proposed techniques of pruning based on upper 

bounds when the constraint is neither monotone, anti-

monotone nor convertible. This paper employs such a 

technique. The contribution of this paper is to tight upper 

bounds on the utility. 

 

2.3    Top-k pattern mining 

 

Many papers have been developed to mine different types of 

top-k patterns such as top-k frequent item sets [13, 14, 15], 

top-k frequent closed item sets [13, 16], top-k closed 

sequential item sets [17], top-k association rules [18]. The 

difference in each mining algorithm lies in the type of pattern 

discovered, as well as the data structures and search 

strategies that are used. For example, some algorithms [19, 

18] are using rule expansion strategy for finding patterns, 

while others use a pattern growth search using structures 

such as FP-Tree[19, 20, 28]. The possibility of data 

structures and search method affect the efficiency of a top-k 

pattern mining algorithm in terms of both memory and 

execution time. However, these algorithms discover top-k 

patterns according to traditional measures instead of the 

utility measure. As a consequence, they may miss patterns 

producing high utility. 

 

2.4    Top-k high utility pattern mining 

 

The task of top-k high utility pattern mining was introduced 

by Chan et al [20]. But, the definition of high utility item set 

used in their study is different from the one used in other 

works. Chan et al’s study has examined utilities of various 

items, but relative values of items in transactions were not 

taken into consideration. Zihayat and An [21] have proposed 

a systematic algorithm T-HUDS for mining top k HUIs over 

data streams. Yin et al. [22] has proposed a new framework 

for mining top-k high utility sequential patterns. Ryung and 

Yun proposed the REPT algorithm [23] with four strategies 

PUD, RIU, RSD and SEP for top-k HUI mining. In REPT, 

besides the parameter k, users need to set another parameter 

N to control the effectiveness of RSD [23]. However, it is not 

easy for users to select an appropriate N value and the choice 

of N greatly affects the performance of REPT. 

 

3. Methodology 
 

This section briefly describes the utility mining problem that 

we are going to deal with. Let I be the universe of items. Let 

D be a database of transactions t1… tn, where each ti⊆ I. 

Each item in a transaction is given a nonzero share. Each 

distinct item has a weight independent of any transaction, 

given by an eXternal Utility Table (XUT). The research 

problem of finding all high utility patterns is formally 

defined as follows. 

 

The inner utility of an item i in a transaction t, represented by 

iu (i, t), is the share of i in t. The external utility of an item i, 

denoted by eu (i), is the weight of i independent of any 

transaction. The utility of an item i in a transaction t, 
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represented by u(i,t), is the function f of iu(i,t) and eu(i), that 

is, u(i,t)=f(iu(i,t),eu(i)). 

A transaction t contains a pattern X if X is a subset of t, 

which means that every item i in X has a non-zero share in t, 

that is, iu (i, t) ≠ 0. The transaction set of a pattern X, 

denoted by TS(X), is the set of transactions that include X. 

The count of transactions in TS(X) is the support of X, 

denoted by s(X). 

 

For a pattern X contained in a transaction t, that is, X ⊆t, the 

utility of X in t, represented by, u (X, t), is the sum of the 

utility of every component item of X in it, that is, 

 

 
 

The utility of X, depicted by u (X), is the sum of the utility of 

X in every transaction carrying X, that is, 

 

 
 

A pattern is a high utility pattern if its utility is no less than a 

user specified minimum utility threshold. High utility pattern 

mining is to discover all high utility patterns, that is, 

 
Consider an example of a super market database. 

 

   Table 1: Database D and eXternal Utility Table (XUT) 

 

 
 

Table 1 (a) lists the quantity of each product in each 

shopping transaction. Here, I = {a, b, c, d, e, f, g} and D ={t1, 

t2, t3, t4, t5}. Table 1 (b) lists the price (weight) of each 

product. For a transaction t4, iu (a,t4) = 3, iu (b,t4) = 1, iu 

(d,t4) = 4, iu (e,t4) = 3 and eu(a) = 1, eu( b) = 3, eu( d) = 2, 

and eu(e) = 2. Here, u (i, t) is the product of iu (i, t) and eu 

(i). Thus, u (a, t4) = 3, u (b, t4) = 3, u (d, t4) = 8 and u (e, t4) = 

6. Suppose the manager wants to know every combination of 

products with sales revenue no less than 30, that is, minimum 

utility = 30. Since TS ({a, b}) = {t2, t3, t4, t5}, we have, u ({a, 

b}) = u ({a, b}, t2) + u ({a, b}, t3) + u ({a, b}, t4) + u ({a, b}, 

t5) = u (a, t2) + u (b, t2) + u (a, t3) + u (b, t3) + u (a, t4) + u (b, 

t4) + u (a, t5) + u (b, t5) = 27. Similarly, u ({a, c}) = 28, u ({b, 

c}) = 24, u ({a, b, c}) = 31, u ({a, b, c, d}) = 13, and so on. 

Therefore, HUPset = {{a, b, c}, {a, b, d}, {a, d, e}, {a, b, d, 

e}, {b, d, e}, {d, e}, {a, b, c, d, e, g}}.      

 

A standard method to mine high utility patterns is to 

enumerate each subset of I and test those subsets have a 

utility over the threshold. However such an enumeration is 

infeasible due to the large number of subsets of I. So, a high 

utility pattern growth approached is introduced, in which a 

reverse set enumeration tree is used and a pruning technique 

is used to reduce the number of patterns to be enumerated. 

The pattern growth approach can be viewed as searching a 

reverse set enumeration tree in a depth-first manner. The 

following figure represents a reverse set enumeration tree.   

 

 
Figure 1: Reverse set enumeration tree 

 

The construction of the reverse set enumeration tree follows 

an imposed ordering Ώ of items. The root is labeled by no 

item, each node N other than the root is labeled by an item, 

denoted by, item (N). The path from the node N to the root 

represent a pattern, denoted by pat (N). Child nodes of N are 

labeled by items listed before item (N) in Ώ. The imposed 

ordering of items, denoted by Ώ, is an ordered sequence of 

all the items in I. For items i and j, i ≺ j denotes that i is 

listed before j. 

 

It is computationally infeasible to enumerate all patterns, so a 

standard solution is to prune the search space. Here the 

pruning is based on utility upper bounding [11, 12]. With the 

pattern growth approach, the method is to approximate an 

upper bound on utilities of all viable patterns represented by 

nodes in the sub tree rooted at the node currently being 

explored, when growing the reverse set enumeration tree. If 

such an upper bound is less than minimum utility, the sub 

tree itself can be pruned as all the patterns in the sub tree are 

not high utility patterns.     

 

A pattern Y represented by a node C in the sub tree rooted at 

a node N is a prefix extension of pattern X represented by N, 

which leads to a way to estimate an upper bound on the 

utility of Y. Given an ordering Ώ, a pattern Y is a prefix 

extension of a pattern X, if X is a suffix of Y, that is, if Y = 

W ˅ X for some W with W ≺ X in Ώ.      

 

Given an ordering Ώ, a pattern Y is a full prefix extension of 

a pattern X w.r.t. a transaction t containing X, denoted as, Y 

= fpe(X, t), if Y is a prefix extension of X derived by adding 

exactly all the items in t that are listed before X in Ώ. The 

basic upper bounds are defined by, for a pattern X, the sum 

of the utility of full prefix extension of X w.r.t each 

transaction in TS(X), denoted by, uBfpe(X), is no less than the 

utility of any prefix extension Y of X, that is, 

 
The algorithm used for mining patterns in single phase is the 

d
2
HUP, Direct Discovery of High Utility Pattern. It is an 
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integration of the depth-first search of reverse set 

enumeration tree and the pruning strategy that reduces the 

number of patterns to be enumerated. The algorithm builds 

the transaction set (TS) by scanning the database (D) and 

external utility table (XUT) to compute support, utility and 

upper bound for each item i. The algorithm starts finding 

high utility patterns from the root of the reverse set 

enumeration tree by calling the depth-first strategy, DFS(N, 

TS(pat(N)), minU, Ω). For the node N currently being 

visited, DFS print pat (N) as a high utility pattern if its utility 

is no less than the threshold [1].   

 

Along with mining high utility patterns in single phase, a 

method for mining top-k high utility item sets are also 

introduced, where k is the desired number of item sets to be 

mined.  It uses the basic search procedure of HUI-miner and 

its utility-list structure [24]. Whenever an item set is 

generated, its utility is calculated by its utility list without 

scanning the original database.   Pruning the search space for 

HUI mining is difficult because the super set of a low utility 

item set can be high utility. To handle this problem, the 

concept of Transaction Weighted Utility (TWU) model was 

introduced [25]. In this model, an item set is called high 

transaction weighted utilization item set (HTWUI) if its 

TWU is no less than the minimum utility, where the TWU of 

an item set indicates an upper bound on its utility. Therefore, 

a HUI must be a HTWUI. 

 

In this method, each item set is associated with a utility-list. 

The utility lists of item sets are called initial utility-lists, 

which can be constructed by scanning the database twice. In 

the first database scan TWU and utility values of each item 

are calculated. During the second scan, items in each 

transaction are sorted in order of TWU values and the utility-

list of each item is constructed. 

 

Table 2 shows an example database, where items in each 

transaction are arranged in the ascending order of TWU 

value. Figure 2 shows the utility-list of items for thedatabase 

in Table 2. The utility-list of an item X consists of one or 

more tuples. Each tuple represents the information of 

 

X in a transaction T, and has three fields: Tid, iutil, rutil. 

Fields Tid and iutil respectively contains the identifier of T 

and utility of X in T. Field rutil indicates the remaining 

utility of X in T.   

 

        Table 2: Transactions for constructing utility-list 

 
 

 
Figure 2: Initial utility lists 

 

The algorithm takes as input the parameter k and 

transactional database D in horizontal format. If the database 

have been transformed into vertical format such as initial 

utility-lists, the algorithm can directly use it for mining top-k 

HUIs. In top-k HUI mining, no minimum utility threshold is 

provided in advance. Therefore the minimum utility 

threshold is initially set to zero and the algorithm has to 

gradually raise the threshold to prune the search space. Such 

a threshold is an internal parameter of the algorithm, called 

border minimum utility threshold min_utilBorder. The 

algorithm initially sets the threshold to zero and maintains a 

heap structure for maintaining the current top-k HUIs during 

the search. The algorithm then scans the database twice to 

build the initial utility lists. During the search, the algorithm 

updates the list of current top-k HUIs and gradually raises 

the min_utilBorder threshold. When the algorithm terminates, 

the heap structure captures the complete set of top-k HUIs in 

the database. Initially, the heap structure is empty. When an 

item set X is found during the search procedure and its utility 

is no less than the min_utilBorder, X is added to the heap 

structure. If there are more than k item sets already in the 

heap structure, min_utilBorder can be raised to the utility of the 

k-th item set. After that item sets having a utility lower than 

the raised min_utilBorder are removed from the heap structure.    

 

The method discussed in this paper make use of mining high 

utility patterns in single phase and use the concept of utility-

list for mining top-k high utility item sets. 

 

4. Conclusions 
 

Utility mining is a growing trend of data mining technology. 

Prior works on utility mining all employ a two-phase, 

candidate generation approach that is inefficient and not 

scalable with large databases. The two phase approach 

results in scalability issue due to the large number of 

candidates. This paper propose an algorithm for utility 

mining which finds high utility patterns in single phase. A 

high utility pattern growth approach is described, which is 

the combination of a pattern enumeration strategy and a 

pruning technique by utility upper bounding. It reduces the 

search space and scan time. This paper also concerns the 

problem of top-k high utility item sets mining, where k is the 

desired number of item sets to be mined. This method mines 

the item sets without setting minimum utility threshold. 
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