
Recent Trends in Computational Intelligence & Image Processing - RICP 2017

23 February 2017, India

College of Engineering, Vadakara, Calicut, India

International Journal of Science and Research (IJSR)

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Mining High Utility Patterns in Single Phase

Vishnu Priya R
1
, Minu Augustine

2
, Chitra S Nair

3

1PG Scholar, NSS College of Engineering, Palakkad, Kerala, India

2PG Scholar, NSS College of Engineering, Palakkad, Kerala, India

3Assistant Professor, NSS College of Engineering, Palakkad, Kerala, India

Abstract: Utility mining is a growing trend in data mining area. Most of the works on utility mining adapts a two phase candidate

generation approach that is however inefficient. High utility item set refer to the set of items with high utility for example, profit in a

database. To identify high utility item sets, most of the algorithms first generate candidate item sets by estimating their utilities, and then

compute their exact utilities. This two phase approach has scalability issue due to the large number of candidates that it generates. This

approach raises the problem that a large number of candidates are generated, but most of the candidates are found not to be high utility

after their exact utilities were computed. This paper proposes a method that finds high utility patterns in single phase. All the item sets

having a utility meeting a user specified minimum utility threshold are discovered. However, setting the threshold value is a difficult

problem for users. If the threshold is set too small, a huge number of item sets will be generated. On the other hand, if it is set too high,

no item sets will be presented for the users. This paper also address this issue by proposing a framework for top k high utility item set

mining, where k is the desired number of high utility item sets to be mined.

Keywords: Utility mining, High utility patterns, frequent item set mining, and top-k pattern mining

1. Introduction

The rapid development of database technique facilitates the

storage and usage of massive data from various

organizations. How to obtain valuable informations from

various databases has received considerable attention that

result in the rise of related research areas. Among these, the

item set mining problem is most important and that drives

from the frequent item set mining problem.

Finding interesting patterns has been an important data

mining task, and it has got a variety of applications. For

example, genome analysis, cross marketing, condition

marketing etc., where interestingness measures play an

important role. Mining frequent item sets is to identify the

set of items that appear frequently in transactions. The

frequency of an item set is measured with the support of the

item set ie., the number of transactions containing the item

set. If the support of an item set exceeds a user specified

minimum support threshold, the item set is considered as

frequent. Most of the frequent item set mining algorithms

employ the down word closure property of item sets. That is,

all super set of an infrequent item set are infrequent and, all

sub set of a frequent item set are frequent. This property

provides the algorithms with a powerful pruning strategy. In

frequent pattern mining, once an infrequent item set is

identified, the algorithm need not to check the super set of

that item set. Mining of frequent item sets only takes in to

account, the presence and absence of items. Other

information about the item is not considered, such as the

independent utility of an item and the context utility of an

item in a transaction. In a super market database, each item

has a definite price/profit and each item in a transaction is

associated with a distinct count which means the quantity of

the item one bought.

Frequent item set mining is a fundamental research area in

data mining. However, the traditional frequent item set

mining techniques may discover a large amount of frequent

but low-value item sets. And they loss the information on

valuable item sets having low selling frequencies. Hence, it

cannot satisfy the requirement of users who want to discover

item sets with high utilities such as high profits. With

frequent pattern mining an item is considered to be frequent

if its occurrence frequency exceeds a user specified

threshold. For example, mining frequent patterns from a

shopping transaction database refers to the discovery of

products that are frequently purchased by a customer.

However, a user’s interest may relate to many other factors

that are not related to occurrence frequency. For example, a

super market manager will be interested in finding products

with high profits that are related to unit profit and purchased

quantity, that are not considered in frequent pattern mining.

Utility mining was emerged recently to address the

limitations of frequent pattern mining by considering user’s

expectation as well as the raw data. Like frequent item sets,

item sets with utilities not less than a user specified

minimum utility threshold is generally valuable and

interesting, and they are called high utility item sets. The

downward closure property of item sets no longer exist for

high utility item sets. When items are added to the item set

one by one, the support of item set monotonously decreases

or remains unchanged, but the utility of item set varies

irregularly.

Most of the utility mining algorithms adopt a two phase,

candidate generation approach, that is, first find candidates

of high utility patterns in the first phase, and then scan the

raw data one more time to find high utility patterns from

thecandidates in the second phase. In the second phase, the

algorithms compute the exact utilities of candidates by

scanning the database. The challenge is that number of

candidates can be huge, which is the scalability and

efficiency bottleneck. It also creates problem when the raw

data contains many more transactions or the minimum utility

threshold is small. The large number of candidates issue not

only in the first phase but also in the second phase. This

paper proposes a method that finds high utility patterns in

single phase.

Paper ID: RCIP2017-21 81

Recent Trends in Computational Intelligence & Image Processing - RICP 2017

23 February 2017, India

College of Engineering, Vadakara, Calicut, India

International Journal of Science and Research (IJSR)

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Even though many methods have been proposed for high

utility mining, it is difficult for users to choose an

appropriate minimum utility threshold. Depending on the

threshold, the output size can be either small or large. If the

threshold is set too small, large number of high utility item

sets will be displayed to the user. Such a large number of

high utility item sets may cause the mining algorithm

inefficient. It may also leads to run out of memory. Because,

the higher utility item sets the algorithm produce, the more

resources they consume. On the other hand, if the threshold

is set too high, no high utility item sets will be generated. To

find an appropriate value for the minimum utility threshold,

the user needs to guess and repeatedly run the algorithm.

This process is both inconvenient and time consuming. To

discover the high utility item sets without defining the utility

threshold is to redefine the task of high utility item sets

mining as mining top k high utility item set, where k is the

number of desired number of item sets that the users want to

find. The idea is to let the user specify k, instead of

specifying the minimum utility threshold. And also, choosing

the threshold primarily depends on the database

characteristics that are often unknown to users. This paper

also proposes a framework for mining top k high utility item

sets, where k is the desired number of item sets to be mined.

2. Related Works

High utility pattern mining is related to frequent pattern

mining and constraint based mining. This section briefly

describes prior works on both of these areas and how they

connect to the proposed method.

2.1 Frequent pattern mining

Frequent pattern mining was first introduced by Agarwal et

al, [3]. It discovers all patterns whose support are not less

than a user specified support threshold. Frequent pattern

mining employs the anti-monotonicity property: the support

of the super set of a pattern is no more than the support of the

pattern. Frequent pattern mining algorithm as well as high

utility pattern mining algorithms fall into three categories,

breadth-first search, depth-first search and hybrid search.

Apriori by Agrawal and Srikant [4] is a breadth-first

algorithm for mining frequent patterns. FP-growth by Han et

al, [5] is a depth-first algorithm. It compresses the database

by FP-trees in main memory. Eclat by Zaki [6] is a hybrid

algorithm that keeps a database in memory by a vertical tid-

list layout [8], and can work either in depth-first or breadth-

first manner.

As the breadth-first strategy is more memory intensive, it is

used in this paper.

2.2 Constraint based mining

The constraint based is a milestone from frequent pattern

mining to utility mining. Many of the works on this area

mainly focus on how to push constraints into frequent pattern

mining algorithm. Bucila et al. [9] considered mining

patterns that satisfy both anti-monotone and monotone

constraints, and presented an algorithm, DualMiner, that

efficiently reduces its search space using both anti-monotone

and monotone constraints.

De Raedt et al. [10] investigated how constraints based

method can be applied to constraint based mining problems

with constraints that are monotone, anti-monotone and

convertible. Bayarado and Agrawal [11] and Morishita and

Sese [12] proposed techniques of pruning based on upper

bounds when the constraint is neither monotone, anti-

monotone nor convertible. This paper employs such a

technique. The contribution of this paper is to tight upper

bounds on the utility.

2.3 Top-k pattern mining

Many papers have been developed to mine different types of

top-k patterns such as top-k frequent item sets [13, 14, 15],

top-k frequent closed item sets [13, 16], top-k closed

sequential item sets [17], top-k association rules [18]. The

difference in each mining algorithm lies in the type of pattern

discovered, as well as the data structures and search

strategies that are used. For example, some algorithms [19,

18] are using rule expansion strategy for finding patterns,

while others use a pattern growth search using structures

such as FP-Tree[19, 20, 28]. The possibility of data

structures and search method affect the efficiency of a top-k

pattern mining algorithm in terms of both memory and

execution time. However, these algorithms discover top-k

patterns according to traditional measures instead of the

utility measure. As a consequence, they may miss patterns

producing high utility.

2.4 Top-k high utility pattern mining

The task of top-k high utility pattern mining was introduced

by Chan et al [20]. But, the definition of high utility item set

used in their study is different from the one used in other

works. Chan et al’s study has examined utilities of various

items, but relative values of items in transactions were not

taken into consideration. Zihayat and An [21] have proposed

a systematic algorithm T-HUDS for mining top k HUIs over

data streams. Yin et al. [22] has proposed a new framework

for mining top-k high utility sequential patterns. Ryung and

Yun proposed the REPT algorithm [23] with four strategies

PUD, RIU, RSD and SEP for top-k HUI mining. In REPT,

besides the parameter k, users need to set another parameter

N to control the effectiveness of RSD [23]. However, it is not

easy for users to select an appropriate N value and the choice

of N greatly affects the performance of REPT.

3. Methodology

This section briefly describes the utility mining problem that

we are going to deal with. Let I be the universe of items. Let

D be a database of transactions t1… tn, where each ti⊆ I.

Each item in a transaction is given a nonzero share. Each

distinct item has a weight independent of any transaction,

given by an eXternal Utility Table (XUT). The research

problem of finding all high utility patterns is formally

defined as follows.

The inner utility of an item i in a transaction t, represented by

iu (i, t), is the share of i in t. The external utility of an item i,

denoted by eu (i), is the weight of i independent of any

transaction. The utility of an item i in a transaction t,

Paper ID: RCIP2017-21 82

Recent Trends in Computational Intelligence & Image Processing - RICP 2017

23 February 2017, India

College of Engineering, Vadakara, Calicut, India

International Journal of Science and Research (IJSR)

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

represented by u(i,t), is the function f of iu(i,t) and eu(i), that

is, u(i,t)=f(iu(i,t),eu(i)).

A transaction t contains a pattern X if X is a subset of t,

which means that every item i in X has a non-zero share in t,

that is, iu (i, t) ≠ 0. The transaction set of a pattern X,

denoted by TS(X), is the set of transactions that include X.

The count of transactions in TS(X) is the support of X,

denoted by s(X).

For a pattern X contained in a transaction t, that is, X ⊆t, the

utility of X in t, represented by, u (X, t), is the sum of the

utility of every component item of X in it, that is,

The utility of X, depicted by u (X), is the sum of the utility of

X in every transaction carrying X, that is,

A pattern is a high utility pattern if its utility is no less than a

user specified minimum utility threshold. High utility pattern

mining is to discover all high utility patterns, that is,

Consider an example of a super market database.

 Table 1: Database D and eXternal Utility Table (XUT)

Table 1 (a) lists the quantity of each product in each

shopping transaction. Here, I = {a, b, c, d, e, f, g} and D ={t1,

t2, t3, t4, t5}. Table 1 (b) lists the price (weight) of each

product. For a transaction t4, iu (a,t4) = 3, iu (b,t4) = 1, iu

(d,t4) = 4, iu (e,t4) = 3 and eu(a) = 1, eu(b) = 3, eu(d) = 2,

and eu(e) = 2. Here, u (i, t) is the product of iu (i, t) and eu

(i). Thus, u (a, t4) = 3, u (b, t4) = 3, u (d, t4) = 8 and u (e, t4) =

6. Suppose the manager wants to know every combination of

products with sales revenue no less than 30, that is, minimum

utility = 30. Since TS ({a, b}) = {t2, t3, t4, t5}, we have, u ({a,

b}) = u ({a, b}, t2) + u ({a, b}, t3) + u ({a, b}, t4) + u ({a, b},

t5) = u (a, t2) + u (b, t2) + u (a, t3) + u (b, t3) + u (a, t4) + u (b,

t4) + u (a, t5) + u (b, t5) = 27. Similarly, u ({a, c}) = 28, u ({b,

c}) = 24, u ({a, b, c}) = 31, u ({a, b, c, d}) = 13, and so on.

Therefore, HUPset = {{a, b, c}, {a, b, d}, {a, d, e}, {a, b, d,

e}, {b, d, e}, {d, e}, {a, b, c, d, e, g}}.

A standard method to mine high utility patterns is to

enumerate each subset of I and test those subsets have a

utility over the threshold. However such an enumeration is

infeasible due to the large number of subsets of I. So, a high

utility pattern growth approached is introduced, in which a

reverse set enumeration tree is used and a pruning technique

is used to reduce the number of patterns to be enumerated.

The pattern growth approach can be viewed as searching a

reverse set enumeration tree in a depth-first manner. The

following figure represents a reverse set enumeration tree.

Figure 1: Reverse set enumeration tree

The construction of the reverse set enumeration tree follows

an imposed ordering Ώ of items. The root is labeled by no

item, each node N other than the root is labeled by an item,

denoted by, item (N). The path from the node N to the root

represent a pattern, denoted by pat (N). Child nodes of N are

labeled by items listed before item (N) in Ώ. The imposed

ordering of items, denoted by Ώ, is an ordered sequence of

all the items in I. For items i and j, i ≺ j denotes that i is

listed before j.

It is computationally infeasible to enumerate all patterns, so a

standard solution is to prune the search space. Here the

pruning is based on utility upper bounding [11, 12]. With the

pattern growth approach, the method is to approximate an

upper bound on utilities of all viable patterns represented by

nodes in the sub tree rooted at the node currently being

explored, when growing the reverse set enumeration tree. If

such an upper bound is less than minimum utility, the sub

tree itself can be pruned as all the patterns in the sub tree are

not high utility patterns.

A pattern Y represented by a node C in the sub tree rooted at

a node N is a prefix extension of pattern X represented by N,

which leads to a way to estimate an upper bound on the

utility of Y. Given an ordering Ώ, a pattern Y is a prefix

extension of a pattern X, if X is a suffix of Y, that is, if Y =

W ˅ X for some W with W ≺ X in Ώ.

Given an ordering Ώ, a pattern Y is a full prefix extension of

a pattern X w.r.t. a transaction t containing X, denoted as, Y

= fpe(X, t), if Y is a prefix extension of X derived by adding

exactly all the items in t that are listed before X in Ώ. The

basic upper bounds are defined by, for a pattern X, the sum

of the utility of full prefix extension of X w.r.t each

transaction in TS(X), denoted by, uBfpe(X), is no less than the

utility of any prefix extension Y of X, that is,

The algorithm used for mining patterns in single phase is the

d
2
HUP, Direct Discovery of High Utility Pattern. It is an

Paper ID: RCIP2017-21 83

Recent Trends in Computational Intelligence & Image Processing - RICP 2017

23 February 2017, India

College of Engineering, Vadakara, Calicut, India

International Journal of Science and Research (IJSR)

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

integration of the depth-first search of reverse set

enumeration tree and the pruning strategy that reduces the

number of patterns to be enumerated. The algorithm builds

the transaction set (TS) by scanning the database (D) and

external utility table (XUT) to compute support, utility and

upper bound for each item i. The algorithm starts finding

high utility patterns from the root of the reverse set

enumeration tree by calling the depth-first strategy, DFS(N,

TS(pat(N)), minU, Ω). For the node N currently being

visited, DFS print pat (N) as a high utility pattern if its utility

is no less than the threshold [1].

Along with mining high utility patterns in single phase, a

method for mining top-k high utility item sets are also

introduced, where k is the desired number of item sets to be

mined. It uses the basic search procedure of HUI-miner and

its utility-list structure [24]. Whenever an item set is

generated, its utility is calculated by its utility list without

scanning the original database. Pruning the search space for

HUI mining is difficult because the super set of a low utility

item set can be high utility. To handle this problem, the

concept of Transaction Weighted Utility (TWU) model was

introduced [25]. In this model, an item set is called high

transaction weighted utilization item set (HTWUI) if its

TWU is no less than the minimum utility, where the TWU of

an item set indicates an upper bound on its utility. Therefore,

a HUI must be a HTWUI.

In this method, each item set is associated with a utility-list.

The utility lists of item sets are called initial utility-lists,

which can be constructed by scanning the database twice. In

the first database scan TWU and utility values of each item

are calculated. During the second scan, items in each

transaction are sorted in order of TWU values and the utility-

list of each item is constructed.

Table 2 shows an example database, where items in each

transaction are arranged in the ascending order of TWU

value. Figure 2 shows the utility-list of items for thedatabase

in Table 2. The utility-list of an item X consists of one or

more tuples. Each tuple represents the information of

X in a transaction T, and has three fields: Tid, iutil, rutil.

Fields Tid and iutil respectively contains the identifier of T

and utility of X in T. Field rutil indicates the remaining

utility of X in T.

 Table 2: Transactions for constructing utility-list

Figure 2: Initial utility lists

The algorithm takes as input the parameter k and

transactional database D in horizontal format. If the database

have been transformed into vertical format such as initial

utility-lists, the algorithm can directly use it for mining top-k

HUIs. In top-k HUI mining, no minimum utility threshold is

provided in advance. Therefore the minimum utility

threshold is initially set to zero and the algorithm has to

gradually raise the threshold to prune the search space. Such

a threshold is an internal parameter of the algorithm, called

border minimum utility threshold min_utilBorder. The

algorithm initially sets the threshold to zero and maintains a

heap structure for maintaining the current top-k HUIs during

the search. The algorithm then scans the database twice to

build the initial utility lists. During the search, the algorithm

updates the list of current top-k HUIs and gradually raises

the min_utilBorder threshold. When the algorithm terminates,

the heap structure captures the complete set of top-k HUIs in

the database. Initially, the heap structure is empty. When an

item set X is found during the search procedure and its utility

is no less than the min_utilBorder, X is added to the heap

structure. If there are more than k item sets already in the

heap structure, min_utilBorder can be raised to the utility of the

k-th item set. After that item sets having a utility lower than

the raised min_utilBorder are removed from the heap structure.

The method discussed in this paper make use of mining high

utility patterns in single phase and use the concept of utility-

list for mining top-k high utility item sets.

4. Conclusions

Utility mining is a growing trend of data mining technology.

Prior works on utility mining all employ a two-phase,

candidate generation approach that is inefficient and not

scalable with large databases. The two phase approach

results in scalability issue due to the large number of

candidates. This paper propose an algorithm for utility

mining which finds high utility patterns in single phase. A

high utility pattern growth approach is described, which is

the combination of a pattern enumeration strategy and a

pruning technique by utility upper bounding. It reduces the

search space and scan time. This paper also concerns the

problem of top-k high utility item sets mining, where k is the

desired number of item sets to be mined. This method mines

the item sets without setting minimum utility threshold.

References

[1] Junqiang Liu, Ke Wang, and Benjamin C.M. Fung,

“Mining high utility patterns in one phase without

generating candidates,” in transactions on knowledge

and data engineering, 2015.

[2] Vincent S. Tseng, Cheng-Wei Wu, Philip S. Yu,

“Efficient algorithms for mining top-k high utility item

sets,” in transactions on knowledge and data

engineering, 2015.

[3] R. Agrawal, T. Imielinski, and A. Swami, “Mining

association rules between sets of items in large

databases,” in SIGMOD.ACM, 1993, pp. 207–216.

[4] R. Agrawal and R. Srikant, “Fast algorithms for mining

association rules,” in VLDB, 1994, pp. 487-499.

Paper ID: RCIP2017-21 84

Recent Trends in Computational Intelligence & Image Processing - RICP 2017

23 February 2017, India

College of Engineering, Vadakara, Calicut, India

International Journal of Science and Research (IJSR)

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[5] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns

without candidate generation,” in SIGMOD.ACM, 2000,

pp. 1–12.

[6] M. J. Zaki, “Scalable algorithms for association

mining,” IEEE TKDE, vol. 12, no. 3, pp. 372–390,

2000.

[7] A. Savasere, E. Omiecinski, and S. B. Navathe, “An

efficient algorithm for mining association rules in large

databases,” in VLDB. ACM, 1995, pp. 432–444.

[8] M. Holsheimer, M. Kersten, H. Mannila, and H.

Toivonen, “A perspective on databases and data

mining,” in KDD. ACM, 1995, pp. 150–155.

[9] C. Bucila, J. Gehrke, D. Kifer, and W. M. White,

“Dualminer: A dual-pruning algorithm for item sets with

constraints,” Data Mining and Knowledge Discovery,

vol. 7, no. 3, pp. 241–272, 2003

[10] L. De Raedt, T. Guns, and S. Nijssen, “Constraint

programming for item set mining,” in SIGKDD, 2008,

pp. 204–212.

[11] R. Bayardo and R. Agrawal, “Mining the most

interesting rules,” in SIGKDD. ACM, 1999, pp. 145–

154.

[12] S. Morishita and J. Sese, “Traversing item set lattice

with statistical metric pruning,” in PODS. ACM, 2000,

pp. 226–236.

[13] K. Chuang, J. Huang and M. Chen, “Mining Top-K

Frequent Patterns in the Presence of the

MemoryConstraint,” The VLDB Journal, Vol. 17, pp.

1321-1344, 2008.

[14] G. Pyun and U. Yun, “Mining Top-K Frequent Patterns

with Combination Reducing Techniques,” Applied

Intelligence, Vol. 41(1), pp. 76-98, 2014.

[15] T. Quang, S. Oyanagi, and K. Yamazaki, “ExMiner: An

Efficient Algorithm for Mining Top-K Frequent

Patterns,” in Proc. of Int’l Conf. on Advanced Data

Mining and Applications, pp. 436 – 447, 2006.

[16] J. Wang and J. Han, “TFP: An Efficient Algorithm for

Mining Top-K Frequent Closed Item sets,” IEEE

Transactions on Knowledge and Data Engineering, Vol.

17(5), pp. 652-664, 2005.

[17] P. Tzvetkov, X. Yan and J. Han, “TSP: Mining Top-K

Closed Sequential Patterns,” Knowledge and

Information System, Vol. 7(4), pp. 438-457, 2005.

[18] P. Fournier-Viger, C. Wu, V. S. Tseng, “Mining Top-K

Association Rules,” in Proc. of Int’l Conf. on Canadian

conference on Advances in Artificial Intelligence,pp.

61–73, 2012.

[19] P. Fournier-Viger, V. S Tseng, “Mining Top-K Sequential

Rules,” in Proc. of Int’l Conf. on Advanced Data Mining

and Applications, pp. 180-194, 2011.

[20] R. Chan, Q. Yang and Y. Shen, “Mining High-utility

Item sets,” in Proc. of IEEE Int'l Conf. on Data Mining,

pp. 19-26, 2003.

[21] M. Zihayat and A. An, “Mining Top-K High Utility Item

sets over Data Streams,” Information Sciences, Vol. 285

(20), pp. 138–161, 2014.

[22] J. Yin, Z. Zheng, L. Cao, Y. Song and W. Wei, “Mining

Top-K High Utility Sequential Patterns,” in Proc. of

IEEE Int'l Conf. on Data Mining, pp. 1259-1264, 2013.

[23] H. Ryang and U. Yun, “Top-K High Utility Pattern

Mining with Effective Threshold Raising Strategies,”

Knowledge-Based Systems, Vol. 76, pp. 109-126, 2015.

[24] M. Liu and J. Qu, “Mining High Utility Item sets

without Candidate Generation,” in Proc. of ACM Int'l

Conf. on Information and Knowledge Management, pp.

55-64, 2012.

[25] Y. Liu, W. Liao, and A. Choudhary, “A Fast High Utility

Item sets Mining Algorithm”, in Proc. of the Utility-

Based Data Mining Workshop, pp. 90-99, 2005.

Paper ID: RCIP2017-21 85

