
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE), 10-11 April 2015

Kruti Institute of Technology & Engineering (KITE), Raipur, Chhattisgarh, India

Licensed Under Creative Commons Attribution CC BY

A Scalable, Hybrid Peer-To-Peer Directory Service

for Mobile Devices

Kailash Prasad Dewangan
1
, Lalita Nayak

2

1Department of Computer Science and Engineering, Kruti Institute of Technology and Engineering, Raipur(C.G.), India

kaishapt@yahoo.com

2Department of Computer Science and Engineering, Kruti Institute of Technology and Engineering, Raipur(C.G.), India

lalitanayak2010@gmail.com

Abstract: As we know that, mobile devices could and should be enabled to provide server functionalities. Co-ordination among

applications requires a directory service that can provide a variety of functions. It brings the challenge to solve the scalability and

dynamism for traditional directory service. In order to improve scalability, we develop a peer-to-peer based directory service that is built

on distributed hash tables. We designed an adaptive load-balancing scheme to reduce hotspots and distribute the load among the

directory servers according to their load and capabilities. Distributed hash tables (DHTs) provide guarantees of an upper bound on the

number of messages to find a key. In order to handle dynamism in the information, we develop a push interface in the directory servers

besides the traditional pull interface. The push interface provides a mechanism to reduce the query load in the server by pushing

information to the clients when the clients need real-time updates for resources.

Keywords: Peer Directory Service, Resource Hash Table, Distributed Hash Table, Peer Virtualization.

1. Introduction

PeerDS is a peer directory server that provides publishing,

resource and group management to resource providers, and

provides pull and push interfaces to clients. A resource hash

table (RHT) is composed of keys, PeerDS nodes and

summary of properties of the keys. A key is a hashed value

of the name of a resource object, its group and its category.

Properties of the key provide the functional and/or non-

functional description of the service, resource or group

associated with the key. The routing table (DHT) in each

PeerDS node keeps track of a subset of all PeerDS nodes.

The DHTs provide the routing among PeerDSs. All PeerDSs

form a PeerDS ring as depicted in Figure 1.

A PeerDS node has a routing table, a successor node set and

the predecessor for each peer identifier associated with the

node. The node also stores part of the global directory

database. In a PeerDS node, there are four interfaces: a

publish interface that provides publish functionality for

resource providers; a pull interface that provides regular

lookup operations for directory clients; a push interface that

provides subscription services to directory clients; and a peer

network interface that supports communication among

PeerDS nodes such as routing.

2. Hybrid Interface

The hybrid interface of directory service is described in

Figure 2. A pull interface is typically provided in the regular

directory services. Usually a client sends a lookup request to

the directory server. After the directory server looks up the

directory database, it sends the result back to the client.

Figure 1: PeerDS system Architecture

When a client wants to know the real-time updates of a

resource such as location, it will frequently send requests to

the directory server to avoid missing some important

updates. If millions of clients choose to do this, as this is

often the case in some important events such as Super Bowl

games, the directory server will be easily overloaded.

Based on this observation, we could provide a push interface

to push this information to the interested clients. A client can

subscribe to the information it is interested in and specify a

filter function so that only useful information would be

transmitted back to client. Since many clients may be

interested in the same information, the directory server only

needs to process once for these groups of clients.

In this way, we could improve the scalability of the directory

server and reduce the communication overhead between a

directory server and its clients. If there are many mobile

clients, we could also move some computing functions to the

directory server to save the energy in the clients. For

44

http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE), 10-11 April 2015

Kruti Institute of Technology & Engineering (KITE), Raipur, Chhattisgarh, India

Licensed Under Creative Commons Attribution CC BY

example, rather than the client receiving the number of

bullets remaining with each soldier and then totaling the

number, the directory server could summarize them and send

only the sum to the client.

Figure 2: Hybrid Interface

Figure 3 describes the scalability comparison between the

push interface and the pull interface. The scalability is

measured by considering the changes of load at the server

with number of requests (clients) in both push and pull

interfaces.

Figure 3: Scalability comparison between Push Interface

and Pull Interface

The server load was measured by the response time

perceived by the directory clients. Each lookup request to the

pull interface requires a database operation that needs around

20ms. With the increase in the number of requests per

second to the directory server, the server load in the push

interface keeps almost constant since the server only needs

one database operation for all subscribers to the same

channel. However, the server load increases dramatically in

the pull interface operations.

3. System Model

Structured P2P systems such as DHT based P2P systems

provide an upper bound on the number of messages so that

they guarantee the answer if the result is in the P2P network.

As we can see from Chord, CAN, Pastry, Tapestry, PeerCQ

and Catalog, this feature is based on the design of identifiers

in the distributed hash tables. There are two identifiers in a

virtualized P2P system: peer identifier and resource

identifier.

In this paper, we mainly focus on peer identifier and resource

identifier. In order to map a resource identifier to a peer

identifier, both identifiers are carefully designed in an m-bit

identifier ring modulo 2m, where m is a system parameter

(m=24 in our study) and 2m is the identifier space, so that a

peer node can be identified when a resource identifier is

known.

Figure 4: Identifier Ring

The identifier ring is depicted in Figure 4. A physical node

could be associated with multiple virtual peer identifiers. P,

P‟‟, P‟‟‟ are three physical nodes. Virtual peers P1, P2, P3,

P4 and P5 are located in node P. Virtual peers P1‟, P2‟, P3‟,

P4‟ and P5‟ are located in node P‟. Virtual peers P1‟‟ and

P2‟‟ are located in node P‟‟.

There are two layers of P2P networks in our system. One is

the virtualized P2P network that we use to publish / lookup

resource objects. The other is the physical network on which

we maintain load balancing. Our top k peer selection

algorithm is executed in the physical P2P network that has a

much smaller number of peers than the virtualized P2P

network. We use the new routing algorithm in the virtualized

P2P network and Chord protocol in the physical one.

3.1 Peer Virtualization Data Model

Let Ip denote a peer identifier, Ir denote resource identifier,

Np denote the number of peer identifiers, Nr denote the

number of resource identifiers. Usually Nr >> Np.

Properties: Properties(Ip) of a peer identifier Ip describe the

address, port, capabilities, node class and load information.

Predecessor: Predecessor(Ip) of a peer identifier Ip is the

maximum peer identifier that is less than Ip in the peer

identifier ring.

45

http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE), 10-11 April 2015

Kruti Institute of Technology & Engineering (KITE), Raipur, Chhattisgarh, India

Licensed Under Creative Commons Attribution CC BY

Successor Node Set SuccessorSet (Ip) of a virtual peer

identifier Ip is defined as:

SuccessorSet (Ip) = { Ipi | Ipi = SUCC_NODE (Ip, i)

(0<=i<r)}

in which SUCC_NODE (x, i) returns the ith minimum peer

identifier which satisfies two conditions: i) it is greater than x

in the peer identifier ring and ii) the node associated with this

peer identifier x is different from the nodes that are already

in the successor node set, and r is the number of successive

nodes maintained.

Routing Table RoutingTable (Ip) of a peer identifier Ip for

node p is defined as: RoutingTable (Ip) = { (Ipi,

Address(Ipi)) | Ipi = MIN_NODE ((Ip+2i-1) mod 2m)

(0<=i<=Np)} in which MIN_NODE (x) returns the

minimum peer identifier which is greater than or equal to x

in the peer identifier ring, and Address (x) returns the

physical IP address of the peer identifier x.

Peer Identifier Descriptor: PeerDescriptor(Ip) of a peer

identifier can be defined as:

{Ip, Properties (Ip), Predecessor (Ip), SuccessorSet (Ip),

RoutingTable (Ip)}

Node Descriptor NodeDescriptor(p) of a node p is defined

as {(Ipi, PeerDescriptor(Ipi)) | Ipi is one of virtual peers

residing in node p.} The comparisons in the above definition

assume modulo 2m operations. In the following discussion,

all comparisons assume modulo 2m operations unless

otherwise specified. If peer p‟ is said to be closer to peer p

than p‟‟ is close to p, that means p‟ is in the clockwise path

from p‟‟ to p‟ in the identifier ring. (This is a very important

point to understand the algorithms.) The routing node table is

used for routing the information among virtual peer nodes.

The successor node set is used for load balancing and fault

tolerance. As we will discuss in the routing algorithm, the

successor node set could also be utilized to speed up routing.

4. Algorithms

4.1 Routing Algorithm

In previous DHT protocols such as Chord, only the routing

table of the peer identifier is used for the routing protocol. In

our system, we utilize both the routing node table and

successor node set of all peer identifiers in the node for the

routing of a message.

As we previously discussed, we assign varying numbers of

virtual peers to a node according to the capabilities and the

load of the node. A node p is associated with the node

descriptor NodeDescriptor(p). The idea to speed up the

routing process is to utilize the shared information in the

node descriptor as the computation in the local node is much

cheaper than the message communication among nodes.

A typical situation of routing is to locate the proper peer

identifier Ip given a resource identifier Ir. The algorithm to

find the next peer identifier Ip‟ to which the request is

forwarded from the current node p is described in Table 1.

FIND_CLOSEST_NODE () returns the peer identifier,

which is the clockwise closest peer in the identifier ring to

the destination peer.

Table 1: Finding the Next Peer Identifier (Routing

Algorithm)

0 Routing (Ir, Ip, p) {

1 If (Ir == Ip) return (Ip, p); // find the peer identifier and the

node

2 Else {

3 (Ip‟, p‟) = (Ip, p) // initialize

4 For (i=0; i < GetNumberOfPeerIDs(p); i ++) {

5 // Find the closet peer identifier (Ip‟‟, p‟‟) in the routing

table of this peer identifier

6 (Ip’’, p’’) = FIND_CLOSEST_NODE (Ir,

p.PeerIDs(i).RoutingTable);

7 // Find the closet peer identifier (Ip‟‟, p‟‟) in the successor

node set

8 // of this peer identifier

9 (Ip’’’, p’’’) =FIND_ CLOSEST_NODE(Ir,

p.PeerIDs(i).SuccessorSet);

10 // Compare (Ip‟, p‟) with (Ip‟‟, p‟‟) and (Ip‟‟‟, p‟‟‟) to find

the closet

11 // peer identifier in these three identifier pairs.

12 // Assign the closet peer identifier and its node to (Ip‟, p‟);

13 (Ip’, p’) = FIND_ CLOSEST_NODE (Ir, {(Ip’, p’),

(Ip’’, p’’), (Ip’’’,p’’’)});

14 }

15 return (Ip‟, p‟);

16 }

17 }

Throughout this chapter, the old routing algorithm refers to

Chord routing algorithm in the virtualized P2P network. The

new routing algorithm refers to our routing algorithm. The

key difference between this routing algorithm and the old

one is the loop from Line 4 to Line 14. The old routing

algorithm will not search the routing tables and successor

node sets of all virtual peer servers residing in the same

node. This routing algorithm is not limited to our peer

virtualization scheme. If a peer virtualization scheme does

not maintain a successor node set for each virtual peer, the

routing algorithm could ignore Line 9.

Now we use an example to compare the new routing

algorithm and the old routing algorithm. In Figure 2, P, P‟

and p‟‟ are three physical nodes. Each physical node may be

allocated multiple virtual peers. P1, P2, P3, P4 and P5 are

virtual peers residing at the same node P. P1‟, P2‟, P3‟, P4‟

and P5‟ are virtual peers residing at the same node P‟. P‟‟1

and P‟‟2 are virtual peers residing at the same node P‟‟. A

query request for resource Ix is made to the virtual peer P1.

PATH 1 (P1->P‟2->P4->P‟4->P‟‟1) shows the routing path

in the old routing algorithm, which only searches the routing

table of the virtual peer.

PATH 2 (P1-> P‟4->P‟‟1) shows the routing path if we

search all the routing tables of all virtual peers residing at the

same node. PATH 3 (P1-> P‟‟1) shows the routing path of

the new routing algorithm, which searches all the routing

tables and successive Node Set of all virtual peer servers

residing in the same node. As we can see from Figure 14,

PATH 1 needs 4 hops to reach the destination, PATH 2

needs 2 hops to reach the destination and PATH 3 only needs

one hop to reach the destination.

46

http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE), 10-11 April 2015

Kruti Institute of Technology & Engineering (KITE), Raipur, Chhattisgarh, India

Licensed Under Creative Commons Attribution CC BY

Hypothesis 1: Given a resource identifier Ir, the routing in

the virtual peer pp‟, which is closer to the destination virtual

peer pp in the clockwise direction at the identifier ring than

the other virtual peer pp‟‟, takes equal or less number of

messages to reach pp than the routing in a peer pp‟‟. We

formalize the hypothesis as follows:

Let PATH (pp‟, pp, Ir) be the routing path from p‟ to p and

PATH (pp‟‟, pp, Ir) be the routing path from pp‟‟ to pp. Let

Distance (pp‟, pp, Ir) be the number of hops of PATH(pp‟,

pp, Ir) and Distance(pp‟‟, pp, Ir) be the number of hops of

PATH(pp‟‟, pp, Ir).

If pp‟ is closer to pp than pp‟‟ is close to pp in the clockwise

direction, we have

Distance (pp‟, pp, Ir) <= Distance (pp‟‟, pp, Ir)

The hypothesis is correct if pp‟ and pp‟‟ are virtual peers that

reside in the same physical node pp* since our routing

algorithm will search routing tables and successor sets in pp*

to find the same or closer next peer so that Distance (pp‟, pp,

Ir) <= Distance (pp‟‟, pp, Ir).

Table 2: Lookup Operation

0 Lookup (resource_category, resource_group,

resource_object_name, resource_properties) {

1 // Generate the resource identifier based on the resource

group

2 // and resource object name

3 Ir= GenerateResourceIdentifier (resource_category,

resource_group,

4 resource_object_name);

5 (Ip‟, p‟) = Routing (Ir, Ip, p);

6 (Ip‟‟, p‟‟) = (Ip, p);

7 // Find the node that stores the information about the

resource object.

8 While ((Ip‟, p‟) != (Ip, p)) {

9 Forward the lookup requests to node p‟

10 Continue the lookup operation in node p‟

11 (Ip”,p”) = (Ip‟, p‟);

12 (Ip‟, p‟) = Routing (Ir, Ip’, p’);

13 }

14 Now the node p‟ is the node that stores the information

about the resource object.

15 Query the resource database in the node p‟ to return the

records that satisfies resource properties including both

functional properties and non-functional properties.

16 }

5. Conclusion

Structured peer-to-peer systems are popular solutions for

large scale distributed computing and query processing. We

implement a scalable peer-to-peer based directory service

called PeerDS, which is built on an improved distributed

hashed table protocol. PeerDS supports both pull-based

queries and push-based update multicasts to address

dynamism, heterogeneity, complexity and scalability of

information.

Heterogeneity among peers calls for peer virtualization to

maintain a simple, yet powerful peer-to-peer overlay

network. Nevertheless, peer virtualization generates a huge

number of virtual peers and causes the unnecessary

communication overhead in the routing process. In this

paper, we propose a new peer-to-peer routing algorithm that

reduces the number of hops of message forwarding and

improves the performance of routing.

We study the new and previous algorithms from the

analytical perspective and through simulations. It shows that

the average number of hops per query is improved by 15% to

25% in our algorithm. The load balancing scheme is based

on multiple factors which could be optimized on cost,

proximity, reputation and other factors. This scheme

eliminates the need to periodically maintain metadata for

load balancing. And it does not need a central pool available

to maintain load information of overloaded peers and

lightweight peers.

K

k

o
pk

P

p
E

1

2)(
1

 (1)

References

[1] M. Carey, S. Krishnamurthi and M. Livny, “Load

Control for Locking: The „Halfand- half‟ Approach”, in

the 9th Symp. On Principles of Database Systems

(PODS), April 1990.

[2] J. Chen, D. J. Dewitt, F. Tian and Y. Wang,

“NiagaraCQ: A Scalable Continuous Query System for

Internet Databases”. In ACM SIGMOD, 2000.

[3] P. K. Chrysanthis, “Transaction Processing in a Mobile

Computing Environment”, in IEEE workshop on

Advances in Parallel and Distributed Systems, October

1993.

[4] Dirckze, R. and L. Gruenwald, "A Pre-Serialization

Transaction Management Technique for Mobile

Multidatabases", ACM Mobile Networks and

Applications, Volume 5, Number 4, December 2000,

pp. 311-321.

[5] Dirckze, R. and L. Gruenwald, "A Toggle Transaction

Management Technique for Mobile Multidatabases",

ACM Conference on Information and Knowledge

Management (CIKM), November 1998, pp. 371-377.

[6] M.H. Eich and A. Helal, “A Mobile Transction Model

that Captures Both Data and Movement Behavior”,

ACM-Baltzer Journal on Special Topics on Mobile

Networks and App, 1997.

[7] B. Gedik and L. Liu. “PeerCQ: A Decentralized and

Self-Configuring Peer-to-Peer Infrmation Monitoring

System”. ICDCS 2003.

[8] G. Kortuem, J. Schneider, D. Preuitt, T. Thompson, S.

Fickas and Z. Segall. “When Peer-to-Peer comes Face-

to-Face: Collaborative Peer-to-Peer Computing in

Mobile Ad-hoc Networks,” First International

Conference on Peer-to-Peer Computing (P2P 2001),

Linköpings, Sweden, August, 2001, pp. 75-91.

[9] S. K. Prasad, V. Madisetti, R. Sunderraman, et al.

“System on Mobile Devices (SyD): Kernel Design and

Implementation”, in First International Conference on

Mobile Systems, Applications, and Services (MobiSys),

Poster and Demo Presentation, May 5-8, 2003, San

Francisco.

[10] S. K. Prasad, A. G. Bourgeois, E. Dogdu, et al.

“Enforcing Interdependencies and Executing

Transactions Atomically Over Autonomous Mobile

47

http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE), 10-11 April 2015

Kruti Institute of Technology & Engineering (KITE), Raipur, Chhattisgarh, India

Licensed Under Creative Commons Attribution CC BY

Data Stores Using SyD Link Technology”, in Mobile

Wireless Network Workshop held in conjunction with

The 23rd International Conference on Distributed

Computing Systems (ICDCS) , May 19-22, Providence,

Rhode Island.

[11] S. K. Prasad, A. G. Bourgeois, E. Dogdu, et al.

“Implementation of a Calendar Application Based on

SyD Coordination Links”, in the Third International

Workshop on Internet Computing and E-Commerce in

conjunction with the 17th Annual International Parallel

& Distributed Processing Symposium (IPDPS), April

2003, Nice, France.

[12] A. Rao, K. Lakshminarayanan, R. K. Sonesh Surana,

and I. Stoica. “Load balancing in structured p2p

systems.” In the 2nd International Workshop on Peer-

to-Peer Systems (IPTPS), Feb. 2003.

[13] S. Ratnasamy, P. Francis, M. Handley, et al., "A

Scalable Content-Addressable Network." In

SIGCOMM 2001.

[14] A. Rowstron and P. Druschel, "Pastry: Scalable,

distributed object location and routing for large-scale

peer-to-peer systems". IFIP/ACM International

Conference on Distributed Systems Platforms

(Middleware), Heidelberg, Germany, pages 329-350,

November 2001.

[15] Ion Stoica, Robert Morris, David Karger, Frans

Kaashoek, Hari Balakrishnan. "Chord: A Scalable Peer-

To-Peer Lookup Service for Internet Applications."

SIGCOMM 2001.

[16] System on Devices (SyD): A Model with Coordination

Links and a Calendar Application, Utility Patent

Filed,2002

[17] W. Tang, L. Liu and C. Pu, “Trigger Grouping: A

Scalable Approach to large Scale Information

Monitoring”, In NCA 2003.

[18] W. Xie, S. B. Navathe and S. K. Prasad, “PeerDS: a

scalable directory service”, in submission.

[19] W. Xie, S. B. Navathe and S. K. Prasad, “Optimizing

Peer Virtualization and Load Balancing”, To appear in

the 11th International Conference on Database Systems

for Advanced Applications (DASFAA), Apr 2006.

[20] W. Xie, S.B. Navathe and S. K. Prasad, “Supporting

distributed transactions over dynamically partitioned

networks”, in preparation.

48

http://creativecommons.org/licenses/by/4.0/

	Introduction
	Hybrid Interface
	System Model
	Peer Virtualization Data Model

	Algorithms
	Conclusion

