
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE), 10-11 April 2015

Kruti Institute of Technology & Engineering (KITE), Raipur, Chhattisgarh, India

Licensed Under Creative Commons Attribution CC BY

Approximate Solution for NP Complete Problem

Sumit Sahu
1
, Makarand Nale

 2
, Mohit More

3

1 IT (Networking)

VIT University, Tamil Nadu

sumitsahu7211@gmail.com

2 IT (Networking)

VIT University, Tamil Nadu

makarand.nale1990@gmail.com

 3 IT (Networking)

VIT University, Tamil Nadu

mohit.more9494@gmail.com

Abstract: We all know the traveling salesman problem is an optimization problem. In deterministic time, we can find the optimal

solutions to the problem through linear programming. However, the TSP is NP Complete problem, it will be very time consuming to

solve big scale problem with guaranteed optimality. Setting optimality aside, there is a bunch of algorithms offering comparably fast

running time and still yielding near optimal solutions, the proposed algorithm will give approximate solution not more than twice of the

optimal solution; this makes sense because it gives the upper bound to an algorithm.

Keywords: NP complete, greedy algorithm, heuristic function.

1. Introduction

In the traveling salesman problem (TSP), which is closely

related to the Hamiltonian cycle problem, a sales person

must traverse n nodes or cities. Making the problem like a

complete graph with n nodes, we can also say that the sales

person is trying to make a tour, or we can also say that a

Hamiltonian cycle, visiting each city exactly once and

ending at the city where he starts from.

The sales person takes a nonnegative integer cost c(i,k) for

traveling from city i to city k, and the salesman wishes to

make the tour whose total cost is minimum, where the total

cost is the sum of the sum of the individual costs along the

edges of the tour.

There are so many ways to finding the optimal length of the

TSP instance. The one we are using here is approximate

algorithm technique. By using approximation algorithm we

are making it run in a polynomial time.

2. Approximate Algorithm

An algorithm that returns near to the optimal solutions is said

to be an approximation algorithm. It depends on the problem,

what is the problem we have, we may also define an optimal

solution as one with maximum possible cost or one with

minimum possible cost, that is the problem can be either

from maximization or from minimization problem. We say

that an algorithm for a problem has an approximation ratio of

ρ(n) if, consider for any input of size n, a cost C of the

solution produced by the algorithm is under the factor of ρ(n)

of the cost C* of an optimal solution:

max(c/c*, c*/c) <= ρ(n).

If an algorithm achieves an approximate ratio of ρ(n), we

can say it a ρ(n) approximation algorithm.

3. Making Tour

3.1 Greedy Algorithm

A greedy algorithm always makes the choice that looks best

at the instance. That is, it makes a locally optimal choice in

the hope that this choice will lead to a globally optimal

solution.

Greedy O(n^2 log(n))

 Start arbitrary vertex as a root vertex.

 Start selecting the vertex, which is optimal at that time.

 Repeat step 2 until all vertices are visited exactly once.

3.2 Closest Point Heuristic

Closest point heuristic routine is clear. The essential thought

of this is to begin with unimportant cycle comprising of a

discretionarily picked vertex. At each one stage, recognize

the vertex u that is not on the cycle that is closest u is vertex

v. Amplify the cycle to incorporate u by embeddings u just

after v. Rehash until all vertices are on the cycle. Closest

point heuristic O(n^2)

 Start with any cycle in the graph and choose any vertex.

 Identify the alternate vertex which is nearest to choose

vertices on the graph.

 Add this selected vertex to the cycle.

 Repeat steps 2 and 3 until all vertices are on the cycle.

3.3 Christofides’ algorithm

Most heuristics can only guarantee a worst-case ratio of 2.

Professor NicosChristofides extended one of these

algorithms and concluded that the worst-case ratio of that

extended algorithm might be 3/2. This algorithm is

414

mailto:sumitsahu7211@gmail.com
mailto:makarand.nale1990@gmail.com

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE), 10-11 April 2015

Kruti Institute of Technology & Engineering (KITE), Raipur, Chhattisgarh, India

Licensed Under Creative Commons Attribution CC BY

commonly known as Christofides heuristic. Original

Algorithm (Double Minimum Spanning Tree), worst-case

ratio 2, O(n2log2(n))

 Build a minimal spanning tree (MST) from the set of all

cities.

 Duplicate all edges; we can now easily construct an Euler

cycle.

 Traverse the cycle, but do not visit any node more than

once, taking shortcuts when a node has been visited.

3.4 Christofides’ algorithm O(n3)

 Make a minimal spanning tree from the set of all cities.

 Create a minimum-weight matching on the set of nodes

having an odd degree. Add the MST together with

the MWM.

 Make an Euler cycle from the combined graph, and

traverse it taking shortcuts to avoid visited nodes[1].

The main difference is the additional MWM calculation.

This part is also the most time consuming one, having a time

complexity of O(n3)[2]. Tests have shown that Christofides

algorithm tends to place itself around 10% above he Held-

Karp lower bound. For more information on tour

construction heuristics see [2].

4. Detailed Problem Definition

The most compelling reason why theoretical computer

scientists believe that P NP comes from the existence of

the class of “NP-complete” problem. This class has the

intriguing property that if any NP-complete problem can be

solved in polynomial time then every problem in NP has a

polynomial time solution , that is, P = NP Despite decades of

study, though, we do not have any polynomial time

algorithm has ever been discovered for any NP-complete

problem.

The problem with traveling salesman problem is whenever

the node increases its growth of complexity also increases

exponentially. For small input of a graph it will not affect

anymore.

5. Solution Methodology

This is an optimization problem in which each potential

solution has a positive cost, and we wish to find a near-

optimal solution.

[3]Many problem of practical significance are NP-complete,

yet they are too important to abandon merely because we do

not know how to find an optimal solution in polynomial

time. Even if a problem is NP-completeness. First and

foremost, if the real inputs are little, a calculation with

exponential running time may be superbly palatable. Second,

we may be able to isolate important special cases that we can

solve in polynomial time. Third, we might come up with

approaches to find near-optimal solutions in polynomial

time. Close optimality is regularly sufficient. We call a

calculation that returns close ideal arrangements an estimated

calculation. Depending on the problem, we may define an

optimal solution as one with maximum possible cost; that is,

the problem may maximization or minimization problem.

We say that an algorithm for a problem has an approximation

ratio of ρ(n) if, consider for any input of size n, a cost C of

the solution produced by the algorithm is under the factor of

ρ(n) of the cost C* of an optimal solution:

max
𝐶

𝐶∗
,
𝐶∗

𝐶
 <= 𝜌(𝑛)

If an algorithm achieves an approximation ratio of 𝜌(𝑛),we

call it a 𝜌(𝑛)- approximation algorithm. The definitions of

the approximation ratio and of a 𝜌(𝑛)-approximation

algorithm apply in the problems. For a maximization

problem, 0<C C*, and the ratio C*/C gives the factor by

which the cost of an optimal solution is larger than the cost

of the estimated arrangement. Likewise, for a minimization

issue, 0 < C* ≤ C, and the degree C/C* gives the variable by

which the expense of the inexact solution is larger than the

cost of an optimal solution. The approximation ratio of an

approximation algorithm will never less than 1, since C/C*

1 implies C*/C 1. Therefore, a 1-approximation algorithm

produces an optimal solution, and an approximation

algorithm with a large approximation algorithm produces an

optimal solution, and an approximation algorithm with a

large approximation ratio may return a solution that is much

worse than optimal.

[3]In traveling salesman problem we have complete

undirected graph G = (V,E) that has a non-negative integer

cost c(u,v) associated with each edge C(u,v) E, and we must

find a Hamiltonian cycle (a tour) of G with minimum cost.

As an expansion of our documentation, let C(a) signify the

aggregate expense of the edges in the subset A subset E:

C(A) = 𝐶 𝑢, 𝑣 .(𝑢 ,𝑣)∈𝐴

In many practical situations, the least costly way to go from a

place u to a place w is to go directly, without any

intermediate steps. Put another way, cutting out an

intermediate stop never increases the cost. We can make a

notion by saying that the cost function c satisfies the triangle

inequality if, for all vertices u,v,w V, C(u,w) C(u,v) +

C(v,w).

6. Proposed Work

After working such a long time, we got that if we are able to

reduce the time complexity of the minimum spanning tree

will greatly affect the complexity of the TSP.

So we are thinking to make such an algorithm which is to be

heuristic, so find minimum spanning tree with a heuristic

function.

Algorithm is as follows:

 Select any of a vertex in the graph as a root vertex.

 Compute minimum spanning tree with heuristic function.

 In this tree apply preorder tree walk, and make the list of

vertices according to the order in which vertices are visited.

 Make a Hamiltonian cycle and return it.

415

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE), 10-11 April 2015

Kruti Institute of Technology & Engineering (KITE), Raipur, Chhattisgarh, India

Licensed Under Creative Commons Attribution CC BY

7. Result, Analysis and Discussion

Even if we take simple implementation of minimum

spanning tree, the running time our algorithm gives O(𝑛2).

Now we are showing that if the cost of the function for an

instance of the traveling salesman problem satisfies the

triangle inequality. Then our returns a cycle or tour whose

cost is not more than twice the cost of an optimal cycle.

Just now we have seen that this approximation algorithm

takes polynomial time. Let Hamil* denote an optimal tour

for the given set of vertices. We obtain a spanning tree by

deleting any edge from a tour, and each edge cost should be

non negative. Therefore, the weight of the minimum

spanning tree T computed in line 2 of our approximate TSP

tour gives a lower bound on the cost of an optimal tour

C(T) C(Hamil*)

A entire walk of T lists the vertices when they are first

visited and also whenever they are returned to after a visit to

a sub tree. Let us call his entire walk as full walk W.

As the full walk traverses every edge of exactly twice,

C(W) C2C(Hamil*)

So the cost of W is within a factor of 2 of the cost of an

optimal tour. By triangle inequality, we can delete a visit to

any vertex from W and the cost does not increase. The

ordering would always be same as obtained by pre order

walk. Let Hamil be the cycle, since every vertex is visited by

once, and it is the cycle computed by our algorithm. Since

Hamil is obtained by deleting vertices from full walk W, we

have

C(Hamil) C(W)

After combining inequalities it gives

C(Hamil)) 2C(Hamil*).

8. Conclusion

This algorithm will not give the optimal solution; however, it

will give the upper bound of an algorithm. This algorithm

will give the complexity under twice the optimal solution.

References

[1] chrni794@student.liu.se ”Heuristics for the Traveling

Salesman Problem”.

[2] D.S. Johnson and McGeoch, “The Traveling Salesman

Problem A Case Study Local Optimization”, November

20, 1995.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, Clifford Stein: Introduction to Algorithms.

416

mailto:chrni794@student.liu.se

