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Abstract: We all know the traveling salesman problem is an optimization problem. In deterministic time, we can find the optimal 

solutions to the problem through linear programming. However, the TSP is NP Complete problem, it will be very time consuming to 

solve big scale problem with guaranteed optimality. Setting optimality aside, there is a bunch of algorithms offering comparably fast 

running time and still yielding near optimal solutions, the proposed algorithm will give approximate solution not more than twice of the 

optimal solution; this makes sense because it gives the upper bound to an algorithm. 
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1. Introduction 
 

In the traveling salesman problem (TSP), which is closely 

related to the Hamiltonian cycle problem, a sales person 

must traverse n nodes or cities. Making the problem like a 

complete graph with n nodes, we can also say that the sales 

person is trying to make a tour, or we can also say that a 

Hamiltonian cycle, visiting each city exactly once and 

ending at the city where he starts from. 

 

The sales person takes a nonnegative integer cost c(i,k) for 

traveling from city i to city k, and the salesman wishes to 

make the tour whose total cost is minimum, where the total 

cost is the sum of the sum of the individual costs along the 

edges of the tour. 

 

There are so many ways to finding the optimal length of the 

TSP instance. The one we are using here is approximate 

algorithm technique. By using approximation algorithm we 

are making it run in a polynomial time. 

 

2. Approximate Algorithm 
 

An algorithm that returns near to the optimal solutions is said 

to be an approximation algorithm. It depends on the problem, 

what is the problem we have, we may also define an optimal 

solution as one with maximum possible cost or one with 

minimum possible cost, that is the problem can be either 

from maximization or from minimization problem. We say 

that an algorithm for a problem has an approximation ratio of 

ρ(n) if, consider for any input of size n, a cost C of the 

solution produced by the algorithm is under the factor of ρ(n) 

of the cost C* of an optimal solution: 

 

max(c/c*, c*/c) <= ρ(n). 

 

If an algorithm achieves an     approximate ratio of ρ(n), we 

can say it a ρ(n)  approximation algorithm. 

3. Making Tour 
 

3.1 Greedy Algorithm 

 

A greedy algorithm always makes the choice that looks best 

at the instance. That is, it makes a locally optimal choice in 

the hope that this choice will lead to a globally optimal 

solution. 

 

Greedy O(n^2 log(n)) 

 

 Start arbitrary vertex as a root vertex. 

 Start selecting the vertex, which is optimal at that time. 

 Repeat step 2 until all vertices are visited exactly once. 

 

3.2 Closest Point Heuristic 

 

Closest point heuristic routine is clear. The essential thought 

of this is to begin with unimportant cycle comprising of a 

discretionarily picked vertex. At each one stage, recognize 

the vertex u that is not on the cycle that is closest u is vertex 

v. Amplify the cycle to incorporate u by embeddings u just 

after v. Rehash until all vertices are on the cycle. Closest 

point heuristic   O(n^2)       

 

 Start with any cycle in the graph and choose any vertex.   

 Identify the alternate vertex which is nearest to choose 

vertices on the graph. 

 Add this selected vertex to the cycle. 

 Repeat steps 2 and 3 until all vertices are on the cycle.  

 

3.3 Christofides’ algorithm 

 

Most heuristics can only guarantee a worst-case ratio of 2. 

Professor NicosChristofides extended one of these 

algorithms and concluded that the worst-case ratio of that 

extended algorithm might be 3/2. This algorithm is 
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commonly known as Christofides heuristic. Original 

Algorithm (Double Minimum Spanning Tree), worst-case 

ratio 2, O(n2log2(n)) 

 

 Build a minimal spanning tree (MST) from the set of all 

cities. 

 Duplicate all edges; we can now easily construct an Euler 

cycle. 

 Traverse the cycle, but do not visit any node more than 

once, taking shortcuts when a node has been visited. 

 

3.4 Christofides’ algorithm O(n3) 

 

 Make a minimal spanning tree from the set of all cities. 

 Create a minimum-weight matching on the set of nodes 

having an odd degree. Add the MST together with 

the MWM. 

 Make an Euler cycle from the combined graph, and 

traverse it taking shortcuts to avoid visited nodes[1]. 

 

The main difference is the additional MWM calculation. 

This part is also the most time consuming one, having a time 

complexity of O(n3)[2]. Tests have shown that Christofides 

algorithm tends to place itself around 10% above he Held-

Karp lower bound. For more information on tour 

construction heuristics see [2]. 

 

4. Detailed Problem Definition 
 

The most compelling reason why theoretical computer 

scientists believe that P  NP comes from the existence of 

the class of “NP-complete” problem. This class has the 

intriguing property that if any NP-complete problem can be 

solved in polynomial time then every problem in NP has a 

polynomial time solution , that is, P = NP Despite decades of 

study, though, we do not have any polynomial time 

algorithm has ever been discovered for any NP-complete 

problem. 

 

The problem with traveling salesman problem is whenever 

the node increases its growth of complexity also increases 

exponentially. For small input of a graph it will not affect 

anymore. 

 

5. Solution Methodology 
 

This is an optimization problem in which each potential 

solution has a positive cost, and we wish to find a near-

optimal solution. 

 

[3]Many problem of practical significance are NP-complete, 

yet they are too important to abandon merely because we do 

not know how to find an optimal solution in polynomial 

time. Even if a problem is NP-completeness. First and 

foremost, if the real inputs are little, a calculation with 

exponential running time may be superbly palatable. Second, 

we may be able to isolate important special cases that we can 

solve in polynomial time. Third, we might come up with 

approaches to find near-optimal solutions in polynomial 

time. Close optimality is regularly sufficient. We call a 

calculation that returns close ideal arrangements an estimated 

calculation. Depending on the problem, we may define an 

optimal solution as one with maximum possible cost; that is, 

the problem may maximization or minimization problem. 

   

We say that an algorithm for a problem has an approximation 

ratio of ρ(n) if, consider for any input of size n, a cost C of 

the solution produced by the algorithm is under the factor of 

ρ(n) of the cost C* of an optimal solution: 

 

max 
𝐶

𝐶∗
,
𝐶∗

𝐶
 <= 𝜌(𝑛) 

 

If an algorithm achieves an approximation ratio of 𝜌(𝑛),we 

call it a 𝜌(𝑛)- approximation algorithm. The definitions of 

the approximation ratio and of a 𝜌(𝑛)-approximation 

algorithm apply in the problems. For a maximization 

problem, 0<C C*, and the ratio C*/C gives the factor by 

which the cost of an optimal solution is larger than the cost 

of the estimated arrangement. Likewise, for a minimization 

issue, 0 < C* ≤ C, and the degree C/C* gives the variable by 

which the expense of the inexact solution is larger than the 

cost of an optimal solution. The approximation ratio of an 

approximation algorithm will never less than 1, since C/C*  

1 implies C*/C  1. Therefore, a 1-approximation algorithm 

produces an optimal solution, and an approximation 

algorithm with a large approximation algorithm produces an 

optimal solution, and an approximation algorithm with a 

large approximation ratio may return a solution that is much 

worse than optimal. 

 

[3]In traveling salesman problem we have complete 

undirected graph G = (V,E) that has a non-negative integer 

cost c(u,v) associated with each edge C(u,v) E, and we must 

find a Hamiltonian cycle (a tour) of G with minimum cost. 

As an expansion of our documentation, let C(a) signify  the 

aggregate expense of the edges in the subset A subset E: 

 

C(A) =  𝐶 𝑢, 𝑣 .(𝑢 ,𝑣)∈𝐴  

 

In many practical situations, the least costly way to go from a 

place u to a place w is to go directly, without any 

intermediate steps. Put another way, cutting out an 

intermediate stop never increases the cost. We can make a 

notion by saying that the cost function c satisfies the triangle 

inequality if, for all vertices u,v,w  V, C(u,w) C(u,v) + 

C(v,w). 

 

6. Proposed Work 
 

After working such a long time, we got that if we are able to 

reduce the time complexity of the minimum spanning tree 

will greatly affect the complexity of the TSP.  

 

So we are thinking to make such an algorithm which is to be 

heuristic, so find minimum spanning tree with a heuristic 

function. 

 

Algorithm is as follows: 

 

 Select any of a vertex in the graph as a root vertex. 

 Compute minimum spanning tree with heuristic function. 

 In this tree apply preorder tree walk, and make the list of 

vertices according to the order in which vertices are visited. 

 Make a Hamiltonian cycle and return it. 
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7. Result, Analysis and Discussion 
 

Even if we take simple implementation of minimum 

spanning tree, the running time our algorithm gives O(𝑛2). 

Now we are showing that if the cost of the function for an 

instance of the traveling salesman problem satisfies the 

triangle inequality. Then our returns a cycle or tour whose 

cost is not more than twice the cost of an optimal cycle. 

 

Just now we have seen that this approximation algorithm 

takes polynomial time. Let Hamil* denote an optimal tour 

for the given set of vertices. We obtain a spanning tree by 

deleting any edge from a tour, and each edge cost should be 

non negative. Therefore, the weight of the minimum 

spanning tree T computed in line 2 of our approximate TSP 

tour gives a lower bound on the cost of an optimal tour 

 

C(T) C(Hamil*) 

 

A entire walk of T lists the vertices when they are first 

visited and also whenever they are returned to after a visit to 

a sub tree. Let us call his entire walk as full walk W.  

 

As the full walk traverses every edge of exactly twice,  

 

C(W)  C2C(Hamil*) 

 

So the cost of W is within a factor of 2 of the cost of an 

optimal tour. By triangle inequality, we can delete a visit to 

any vertex from W and the cost does not increase. The 

ordering would always be same as obtained by pre order 

walk. Let Hamil be the cycle, since every vertex is visited by 

once, and it is the cycle computed by our algorithm. Since 

Hamil is obtained by deleting vertices from full walk W, we 

have 

 

C(Hamil)  C(W) 

 

After combining inequalities it gives  

 

C(Hamil) ) 2C(Hamil*). 

 

8. Conclusion 

 
This algorithm will not give the optimal solution; however, it 

will give the upper bound of an algorithm. This algorithm 

will give the complexity under twice the optimal solution. 
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