
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE), 10-11 April 2015

Kruti Institute of Technology & Engineering (KITE), Raipur, Chhattisgarh, India

Licensed Under Creative Commons Attribution CC BY

Energy Aware Multiplier Accumulation Unit for

Error Tolerant Digital Signal Processing

Application

Sumant Mukherjee¹, Saurabh Mitra²

¹Dr. C.V.Raman University, Department of Engineering

Kota, Bilaspur,(C.G.)

sjsumant@gmail.com

²Dr. C.V.Raman University, Department of engineering

Kota, Bilaspur,(C.G.)

saurabh.mit1000@gmail.com

Abstract: In this paper we are trying to implement a Multiplier and accumulation unit which will make justice with SPAA (Speed,

Power, Area and Accuracy) metrics. Many authors develop imprecise but simplified MAC units, which provide an extra layer of power

savings over conventional low-power design techniques. Due to the limitations in these methods and the accuracy level requirements still

the complexity can be reduced and the SPAA metrics can be still achieved efficiently. To improve SPAA metrics still there is no any

architecture, so we need a novel MAC unit with low power, high speed, with increased density.

Keywords: Adder, Multiplier, MAC unit, Approximation.

1. Introduction

Digital Signal Processing (DSP) is finding its way into more

applications [10], and its popularity has materialized into a

number of commercial processors [13]. Digital signal

processors have different architectures and features than

general purpose processors, and the performance gains of

these features largely determine the performance of the

whole processor. The demand for these special features

stems from algorithms that require intensive computation,

and the hardware is often designed to map to these

algorithms. Widely used DSP algorithms include the Finite

Impulse Response (FIR) filter, Infinite Impulse Response

(IIR) filter, and Fast Fourier Transform (FFT)[12].Efficient

computation of these algorithms is a direct result of the

efficient design of the underlying hardware. One of the most

important hardware structures in a DSP processor is the

Multiply Accumulate (MAC) unit. Modern computers may

contain a dedicated MAC, consisting of a multiplier

implemented in combinational logic followed by an adder

and an accumulator register that stores the result. This unit

can calculate the running sum of products, which is at the

heart of algorithms such as the FIR [11] and FFT [12]. The

ability to compute with a fast MAC unit is essential to

achieve high performance in many DSP algorithms, and is

why there is at least one dedicated MAC unit in all of the

modern commercial DSP processors [10]. MAC unit must be

very efficient. The conventional high level model of the

MAC unit after synthesis is shown in figure 1. The multiplier

consists of a partial product multiplier that generates the

result in carry-save format and a final carry-propagate adder,

as the representations. The final adder in figure 1

accumulates the new product to the sum of the previous

clock cycle.

Figure 1: The benchmark MAC unit

 The Multipliers have an important effect in designing

arithmetic, signal and image processors. Many mandatory

functions in such processors make use of multipliers (for

example, the basic building blocks in Fast Fourier transforms

(FFTs) and multiply accumulate (MAC) are multipliers). The

advanced digital processors now have fast bit-parallel

multipliers embedded in them. Various methods exist for the

reduction in the computation time involved by the multiplier

with other factors as trade-offs. High-speed, bit-parallel

multiplication can be classified into three types

 (a) shift-and-add multipliers that generate partial products

sequentially and accumulate. This requires more hardware

and is the slowest multiplier. This is basically the array

multiplier making use of the classical multiplying technique

which consumes more time to perform two subtasks,

addition and shifting of the bits and hence consumes 2 to 8

cycles of clock period.

(b) Generating all the partial product bits in parallel and

accumulate them using a multi-operand adder. This is also

called as parallel multiplier by using the techniques of

Wallace tree [10] and Booth algorithm [13],

208

http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE), 10-11 April 2015

Kruti Institute of Technology & Engineering (KITE), Raipur, Chhattisgarh, India

Licensed Under Creative Commons Attribution CC BY

(c) Using arrays of almost identical cells for generation of bit

products and accumulation. The uses of Vedic Mathematics

shows its application in fast calculations (multiplication,

division, squaring, cubing, square root, cube root),

trigonometry, three dimensional coordinate geometry,

solution of plane and spherical triangles, linear and non-

linear differential equations, matrices and determinants, log

and exponential[10]. The most interesting point is to note

that the Vedic Mathematics provides unique solutions in

several instances where trial and error method is available at

present. Vedic Mathematics offers a fresh and highly

efficient approach to mathematics covering a wide range -

starts with elementary multiplication and concludes with a

relatively advanced topic, the solution of non-linear partial

differential equations. But the Vedic scheme is not simply a

collection of rapid methods; it is a system, a unified

approach.

It is assumed that a usable circuit/system should function

perfectly in conventional digital VLSI design, to always

provide definite and accurate results. However, in our non-

digital worldly requests, such ideal operations are seldom

needed. “Analog computation” that yields “good enough”

results instead of totally accurate results [7] may in fact be

acceptable. In fact, for many digital systems, the data they

process have already contained errors. In applications such as

a communication system, the analog signal coming from

outside world must first be sampled before we can convert it

to digital data at the front end of the system. The digital data

is then processed and transmitted in a noisy channel before

being converted back to the analog signal at the back end.

During this process, errors may occur everywhere.

Furthermore, due to the advances in transistor size scaling,

the previously insignificant factors such as noise and process

variations are becoming important impacts in today’s digital

IC design [13].

To grapple with aforementioned VLSI design dilemmas, one

central and novel approach: Imprecise/approximate design

have been anticipated by International Technology Roadmap

for Semiconductors (ITRS) [10]. The expediency of

imprecise/ approximate designs can be taken blessing of a

novel SPAA metrics, resulting astonishing improvements in

speed and/or power with a feeble accord in accuracy.

Moreover, in recent years, emerging class of killer

applications that manifest inherent error-resilience such as

multimedia, graphics, and wireless communications has

enraptured the concept of imprecise/approximate design that

became a state-of-the-art demand. For example, in most

multimedia applications, DSP blocks are implemented as

their core that process signals relevant to human senses, e.g.,

sight and hearing. The verity of limited perception of human

senses alleviates the constraints on accuracy, showing amity

with imprecise/approximate designs.

In accordance with error-resilience design, conventional

wisdom investigate several mechanisms such as truncation

[1] [2], over-clocking, and voltage over-scaling (VOS) [3],

which were not able to configure SPAA metrics effectively.

Beyond this end, some other scenarios such as functional

approximations have been advised in literatures.

Conventional adders such as carry-select (CSL) and carry-

look-ahead (CLA) have critical-path delay approximately

logN, where N is bit-width; on the other hand,

imprecise/approximate adders have been proposed by

researchers via the concept of shorten carry-chain to elevate

design performance. As imprecise/approximate design has

attracted significant interest in recent years, apart the

different design techniques, researchers investigate

modeling, analysis, and synthesis approach for

imprecise/approximate designs.

This work proposes a Approximate multiplier providing the

solution of the aforesaid problems adopting the sutra of

Vedic Mathematics called Urdhva Tiryakbhyam (Vertically

and Cross wise)[1,2,3]. It can be shown that the design MAC

unit is highly efficient in terms silicon area/speed.

2. Literature Review

2.1 Adder Algorithms and Implementations

In nearly all digital IC designs today, the addition operation

is one of the most essential and frequent operations.

Instruction sets for DSP's and general purpose processors

include at least one type of addition. Other instructions such

as subtraction and multiplication employ addition in their

operations, and their underlying hardware is similar if not

identical to addition hardware. Often, an adder or multiple

adders will be in the critical path of the design, hence the

performance of a design will be often be limited by the

performance of its adders. When looking at other attributes

of a chip, such as area or power, the designer will find that

the hardware for addition will be a large contributor to these

areas. It is therefore beneficial to choose the correct adder to

implement in a design because of the many factors it affects

in the overall chip. In this part we begin with the basic

building blocks used for addition, then go through different

algorithms and name their advantages and disadvantages.

3. Basic Adder blocks

3.1 Half Adder

The Half Adder (HA) is the most basic adder. It takes in two

bits of the same weight, and creates a sum and a carryout.

The equation (1) and (2) are the Boolean equations for sum

and carryout, respectively.

 sum = a xor b (1)

carryout = a and b (2)

3.2 Full Adder

The Full Adder (FA) is useful for additions that have

multiple bits in each of its operands. It takes in three inputs

and creates two outputs, a sum and a carryout. Equation (3) ,

(4) and (5) are the Boolean equations for the FA sum and FA

carryout, respectively. In both those equations cin means

carrying.
 sum = a xor b xor cin (3)

 carryout = a and b + b and cin + a and cin (4)

 cin = a and b + (a + b)and cin (5)

From the above equations we see that sum and carryout is

depends on carryin.

209

http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE), 10-11 April 2015

Kruti Institute of Technology & Engineering (KITE), Raipur, Chhattisgarh, India

Licensed Under Creative Commons Attribution CC BY

3.3 Partial Full Adder

The Partial Full Adder (PFA) is a structure that implements

intermediate signals that can be used in the calculation of the

carry bit. Revisiting the truth table for a FA, we extend it to

include the signals generate (g), delete (d), and propagate (p).

When g=1, it means carryout will be 1 (generated) regardless

of carryin. When d=1, it means carryout will be 0 (deleted)

regardless of carryin. When p=1, it means carryout will equal

carryin (carryin will be propagated). The Boolean equations

for the sum and carryout can now be written as functions of

g,p, or d. Equations shows sum and carryout as functions of

g and p (for Equation, p must be implemented. with the

XOR). Figure 3 shows a circuit for creating the generate,

propagate, and sum signals. It is a partial full adder because

it does not calculate the carryout signal directly, rather it

creates the signals needed to calculate the carryout signal..

Figure 2: Gate Schematic for a Partial Full Adder (PFA)

Table 1: Extended Truth Table for a 1-bit adder

 generate(g) = a and b (6)

delete(d) = a and b (7)

 propagate(p) = a and b (or a xor b) (8)

 sum = p xor carryin (9)

 carryout = g or p and carryin (10)

3.4 Ripple Carry Adder [14]

The Ripple Carry Adder (RCA) is one of the simplest adders

to implement. This adder takes in two N-bit inputs (where N

is a positive integer) and produces (N + 1) output bits (an N-

bit sum and a 1-bit carryout). The RCA is built from N full

adders cascaded together, with the carryout bit of one FA

tied to the carryin bit of the next FA.The input operands are

labeled a and b, the carryout of each FA is labeled cout

(which is equivalent to the carryin (cin) of the subsequent

FA), and the sum bits are labeled sum. Each sum bit requires

both input operands and cin before it can be calculated. To

estimate the propagation delay of this adder, we should look

at the worst case delay over every possible combination of

inputs. This is also known as the critical path. The most

significant sum bit can only be calculated when the carryout

of the previous FA is known. In the worst case (when all the

carry outs are 1), this carry bit needs to ripple across the

structure from the least significant position to the most

significant position. Hence, the time for this implementation

of the adder is expressed in Equation (11), where tRCAcarry

is the delay for the carryout of a FA and tRCAsum is the

delay for the sum of a FA.

Propagation Delay(tRCAprop) = (N - 1) . tRCAcarry +

tRCAsum (11)

From Equation (11) , we can see that the delay is

proportional to the length of the adder. An example of a

worst case propagation delay input pattern for a 4 bit ripple

carry adder is where the input operands change from 1111

and 0000 to 1111 and 0001, resulting in a sum changing

from 01111 to 10000. From a VLSI design perspective, this

is the easiest adder to implement. One just needs to design

and layout one FA cell, and then array N of these cells to

create an N-bit RCA. The performance of the one FA cell

will largely determine the speed of the whole RCA. From the

critical path in Equation , minimizing the carryout delay

(tRCAcarry) of the FA will minimize tRCAprop . There are

various implementations of the FA cell to minimize the

carryout delay [2].

3.5 Carry Look Ahead Adder [15]

From the critical path equations in above Sections and 2th

delay is linearly dependent on N, the length of the adder. It is

also shown in Equations and that the t carryout signal

contributes largely to the delay. An algorithm that reduces

the time to calculate t carryout and the linear dependency on

N can greatly speed up the addition operation. Equation

shows that the carryout can be calculated with g, p, and carry

in. The signals g and p are not dependent on carry in, and can

be calculated as soon as the two input operands arrive.

Weinberger and Smith invented the Carry Look Ahead

(CLA) Adder [5]. Each subsequent carryout generated

becomes increasingly difficult because of the large number

of high fan-in gates [6].We see that the delay for a CLA

adder is dependent on the number of levels of carry logic,

and not on the length of the adder. If a group size of four is

chosen, then the number of levels in an N-bit CLA and in

general the number of levels in a CLA for a group size of k .

For an N-bit CLA adder, each level of carry logic introduces

two gate delays in addition to a gate delay for generate and

propagate signals and a gate delay for the sum. This

theoretically results in one of the fastest adder architectures.

4. Multiplication Schemes

Multiplication hardware often consumes much time and area

compared to other arithmetic operations. Digital signal

processors use a multiplier/MAC unit as a basic building

block [5] and the algorithms they run are often multiply-

intensive. A multiplication operation can be broken down

into two steps:

1) Generate the partial products.

2) Accumulate (add) the partial products.

210

http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE), 10-11 April 2015

Kruti Institute of Technology & Engineering (KITE), Raipur, Chhattisgarh, India

Licensed Under Creative Commons Attribution CC BY

Figure 3: Generic Multiplier Block Diagram

Figure 4: Partial product array for an M *N multiplier: As

shown it implies that M = N

4.1 Array Multiplier

From Equation, each multiplicand is multiplied by a bit in

the multiplier, generating N partial products. Each of these

partial products is either the multiplicand shifted by some

amount, or 0. This is illustrated in Fig for an M * N

multiplies operation. The generation of partial products

consists of simple AND'ing of the multiplier and the

multiplicand. The accumulation of these partial products can

be done with rows of ripple adders. Thus, the carry out from

the least significant bit ripples to the most significant bit of

the same row, and then down the left side" of the structure.

The partial products are added in ripple fashion with half and

full adders. A full adder's inputs require the carry in from the

adjacent full adder in its row and the sum from a full adder in

the above row. Abdelgawad [9] states that finding the critical

path in this structure is non-trivial, but once identified,

results in multiple critical paths. It requires a lot of time to

optimize the adders in the array since all adders in the

multiple critical paths need to be optimized to result in any

speed increase (this implies optimization of both the sum and

carryout signals in a full adder). The delay basically comes

down to a ripple delay through a row, and then down a

column, so it is linearly proportional (td *(M +N)) to the sum

of the sizes of the input operands.

4.2 Tree Multiplier

The tree multiplier reduces the time for the accumulation of

partial products by adding all of them in parallel, whereas the

array multiplier adds each partial product in series. The tree

multiplier commonly uses CSAs to accumulate the partial

products.

4.2.1 Wallace Tree

The reduction of partial products using full adders as carry-

save adders (also called 3:2 counters) became generally

known as the \Wallace Tree" [14]. Figure shows an example

of tree reduction for an 8*8-bit partial product tree. The ovals

around the dots represent either a full adder (for three circled

dots) or a half adder (for two circled dots). This tree is

reduced to two rows for a carry-propagate adder after four

stages. There are many ways to reduce this tree with CSAs,

and this fig is just one of them.

Figure 5: Wallace Tree for an 8 * 8-bit partial product tree

4.3 Vedic Multiplication

4.3.1 History of Vedic Multiplication
Vedic mathematics is part of four Vedas (books of wisdom).

It is part of Sthapatya- Veda (book on civil engineering and

architecture), which is an upa-veda (supplement) of Atharva

Veda. It covers explanation of several modern mathematical

terms including arithmetic, geometry (plane, co-ordinate),

trigonometry, quadratic equations, factorization and even

calculus. Vedic mathematics is mainly based on 16 Sutras (or

aphorisms) dealing with various branches of mathematics

like arithmetic, algebra, geometry etc.

4.3.2 Algorithms of Vedic Mathematics
The proposed Vedic multiplier is based on the Vedic

multiplication formulae (Sutras). These Sutras have been

traditionally used for the multiplication of two numbers in

the decimal number system. In this work, we apply the same

ideas to the binary number system to make the proposed

algorithm compatible with the digital hardware. Vedic

multiplication based on some algorithms, some are discussed

below:

4.3.3 Urdhva– Triyagbhyam (Vertically & Crosswise)
Urdhva tiryakbhyam Sutra is a general multiplication

formula applicable to all cases of multiplication. It literally

means “Vertically and Crosswise”. The conventional

methods already know to us will require 16 multiplications

and 15 additions. Urdhva-tiryakbyham[8] (Vertically and

crosswise) deals with the Multiplication of numbers. The

sutra has been traditionally used for the Multiplication of

decimal number [10]. These are having several steps to be

followed:-let us assume 2 digits no, 46 and 55.

 Multiply the unit place digit, store its value in unit place

while carry generated is forwarded to next no.(place

value).

 Now perform the Cross Multiplication of Unit and Ten's

place value and store the result in addition with previous

carry and multiplication value. If carry generated forward

it to next place value.

211

http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE), 10-11 April 2015

Kruti Institute of Technology & Engineering (KITE), Raipur, Chhattisgarh, India

Licensed Under Creative Commons Attribution CC BY

 Now next perform the multiplication to the tens place

digit and then add the result with forwarded carry.

Algorithm for 4 x 4 bit Vedic multiplier Using Urdhva

Tiryakbhyam (Vertically and crosswise) for two Binary

numbers

 X3 X2 X1 X0 (Multiplicand)

 Y3 Y2 Y1 Y0 (Multiplier)

……………………………………………
 P6 P5 P4 P3 P2 P1 P0 (Product)

………………………………

Parallel Computation Methodology(cross product)

X0/YO = XO×Y0 = P0

X1X0 / Y1Y0 = (X1×Y0) + (X0×Y1) = P1

X2X1X0 / Y2Y1Y0 =

(X2×Y0) + (X0×Y2) + (X1×Y1) = P2

X3X2X1X0 / Y3Y2Y1Y0 =

(X3×Y0) + (X0×Y3) + (X2×Y1) + (X1×Y2) = P3

X3X2X1 / Y3Y2Y1 =

(X3×Y1) + (X1×Y3) + (X2×Y2) = P4

X3X2 /Y3Y2 = X3×Y2) + (X2×Y3) = P5

X3 / Y3 = X3 × Y3 = P6

5. Conclusion

This paper present design and implement a MAC [4, 5, 7]

unit . In this work, our main focus is on performance and

accuracy, but we do provide some numbers for the arithmetic

units relating to energy and power. This is to provide an

estimate of the amount of energy and power consumed by

the units we choose to implement. Typically, embedded

computing systems are required to achieve a required level of

computing performance, with simultaneous and severe

constraints on their characteristic such as power

consumption, mobility and size. Moore’s law and the

associated shrinking of transistor sizes, increase in mobility,

decrease in size and power consumption has served as a

driver for the proliferation and ubiquity of embedded

systems. It is desirable for this trend to continue, to enable

new applications and novel contexts in which embedded

systems could be used. So due to this we use approximation ,

which will minimize size of chip.

References

[1] Leem, L.; Hyungmin Cho; Bau, J.; Jacobson, Q.A.;

Mitra, S, "ERSA: Error Resilient System Architecture

for probabilistic applications," Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2010

, vol., no., pp.1560,1565, 8-12 March 2010

[2] Ning Zhu; Wang-Ling Goh; Kiat-Seng Yeo, "An

enhanced low-power high-speed Adder For Error-

Tolerant application," Integrated Circuits, ISIC '09.

Proceedings of the 2009 12th International Symposium

on , vol., no., pp.69,72, 14-16 Dec. 2009

[3] Kahng, A.B.; Seokhyeong Kang, "Accuracy-

configurable adder for approximate arithmetic designs,"

Design Automation Conference (DAC), 2012 49th

ACM/EDAC/IEEE , vol., no., pp.820,825, 3-7 June

2012

[4] Rudagi, J M; Ambli, Vishwanath; Munavalli,

Vishwanath; Patil, Ravindra; Sajjan, Vinaykumar,

"Design and implementation of efficient multiplier

using Vedic Mathematics," Advances in Recent

Technologies in Communication and Computing

(ARTCom 2011), 3rd International Conference on ,

vol., no., pp.162,166, 14-15 Nov. 2011

[5] Abdelgawad, A.; Bayoumi, M., "High Speed and Area-

Efficient Multiply Accumulate (MAC) Unit for Digital

Signal Prossing Applications," Circuits and Systems,

2007. ISCAS 2007. IEEE International Symposium on ,

vol., no., pp.3199,3202, 27-30 May 2007

[6] Mottaghi-Dastjerdi, M.; Afzali-Kusha, A.; Pedram, M.,

"BZ-FAD: A Low-Power Low-Area Multiplier Based

on Shift-and-Add Architecture," Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on ,

vol.17, no.2, pp.302,306, Feb. 2009

[7] Tung Thanh Hoang; Sjalander, M.; Larsson-Edefors, P.,

"A High-Speed, Energy-Efficient Two-Cycle Multiply-

Accumulate (MAC) Architecture and Its Application to

a Double-Throughput MAC Unit," Circuits and

Systems I: Regular Papers, IEEE Transactions on ,

vol.57, no.12, pp.3073,3081, Dec. 2010

[8] Lomte, R.K.; Bhaskar, P.C., "High Speed Convolution

and Deconvolution Using Urdhva Triyagbhyam," VLSI

(ISVLSI), 2011 IEEE Computer Society Annual

Symposium on , vol., no., pp.323,324, 4-6 July 2011

[9] Abdelgawad, A., "Low power multiply accumulate unit

(MAC) for future Wireless Sensor Networks," Sensors

Applications Symposium (SAS), 2013 IEEE , vol., no.,

pp.129,132, 19-21 Feb. 2013

[10] Saokar, S.S.; Banakar, R. M.; Siddamal, S., "High

speed signed multiplier for Digital Signal Processing

applications," Signal Processing, Computing and

Control (ISPCC), 2012 IEEE International Conference

on , vol., no., pp.1,6, 15-17 March 2012

[11] Gandhi, D.R.; Shah, N.N., "Comparative analysis for

hardware circuit architecture of Wallace tree

multiplier," Intelligent Systems and Signal Processing

(ISSP), 2013 International Conference on , vol., no.,

pp.1,6, 1-2 March 2013

[12] Prakash, A.R.; Kirubaveni, S., "Performance evaluation

of FFT processor using conventional and Vedic

algorithm," Emerging Trends in Computing,

Communication and Nanotechnology (ICE-CCN), 2013

International Conference on , vol., no., pp.89,94, 25-26

March 2013

[13] Itawadiya, A.K.; Mahle, R.; Patel, V.; Kumar, D.,

"Design a DSP operations using vedic mathematics,"

Communications and Signal Processing (ICCSP), 2013

International Conference on , vol., no., pp.897,902, 3-5

April 2013

212

http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE), 10-11 April 2015

Kruti Institute of Technology & Engineering (KITE), Raipur, Chhattisgarh, India

Licensed Under Creative Commons Attribution CC BY

[14] Khan, S.; Kakde, S.; Suryawanshi, Y., "VLSI

implementation of reduced complexity wallace

multiplier using energy efficient CMOS full adder,"

Computational Intelligence and Computing Research

(ICCIC), 2013 IEEE International Conference on , vol.,

no., pp.1,4, 26-28 Dec. 2013

[15] Yu-Ting Pai; Yu-Kumg Chen, "The fastest carry

lookahead adder," Field-Programmable Technology,

2004. Proceedings. 2004 IEEE International

Conference on , vol., no., pp.434,436, 28-30 Jan. 2004

213

http://creativecommons.org/licenses/by/4.0/

	Sumant Mukherjee¹, Saurabh Mitra²
	¹Dr. C.V.Raman University, Department of Engineering
	Kota, Bilaspur,(C.G.)
	sjsumant@gmail.com
	²Dr. C.V.Raman University, Department of engineering
	Kota, Bilaspur,(C.G.)
	saurabh.mit1000@gmail.com

