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Abstract: In this paper we are trying to implement a Multiplier and accumulation unit which will make justice with SPAA (Speed, 

Power, Area and Accuracy) metrics. Many authors develop imprecise but simplified MAC units, which provide an extra layer of power 

savings over conventional low-power design techniques. Due to the limitations in these methods and the accuracy level requirements still 

the complexity can be reduced and the SPAA metrics can be still achieved efficiently. To improve SPAA metrics still there is no any 

architecture, so we need a novel MAC unit with low power, high speed, with increased density. 
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1. Introduction 
 

Digital Signal Processing (DSP) is finding its way into more 

applications [10], and its popularity has materialized into a 

number of commercial processors [13]. Digital signal 

processors have different architectures and features than 

general purpose processors, and the performance gains of 

these features largely determine the performance of the 

whole processor. The demand for these special features 

stems from algorithms that require intensive computation, 

and the hardware is often designed to map to these 

algorithms. Widely used DSP algorithms include the Finite 

Impulse Response (FIR) filter, Infinite Impulse Response 

(IIR) filter, and Fast Fourier Transform (FFT)[12].Efficient 

computation of these algorithms is a direct result of the 

efficient design of the underlying hardware. One of the most 

important hardware structures in a DSP processor is the 

Multiply Accumulate (MAC) unit. Modern computers may 

contain a dedicated MAC, consisting of a multiplier 

implemented in combinational logic followed by an adder 

and an accumulator register that stores the result. This unit 

can calculate the running sum of products, which is at the 

heart of algorithms such as the FIR [11] and FFT [12]. The 

ability to compute with a fast MAC unit is essential to 

achieve high performance in many DSP algorithms, and is 

why there is at least one dedicated MAC unit in all of the 

modern commercial DSP processors [10]. MAC unit must be 

very efficient. The conventional high level model of the 

MAC unit after synthesis is shown in figure 1. The multiplier 

consists of a partial product multiplier that generates the 

result in carry-save format and a final carry-propagate adder, 

as the representations. The final adder in figure 1 

accumulates the new product to the sum of the previous 

clock cycle.  

 
Figure 1: The benchmark MAC unit 

 
 The Multipliers have an important effect in designing 

arithmetic, signal and image processors. Many mandatory 

functions in such processors make use of multipliers (for 

example, the basic building blocks in Fast Fourier transforms 

(FFTs) and multiply accumulate (MAC) are multipliers). The 

advanced digital processors now have fast bit-parallel 

multipliers embedded in them. Various methods exist for the 

reduction in the computation time involved by the multiplier 

with other factors as trade-offs. High-speed, bit-parallel 

multiplication can be classified into three types 

 (a) shift-and-add multipliers that generate partial products 

sequentially and accumulate. This requires more hardware 

and is the slowest multiplier. This is basically the array 

multiplier making use of the classical multiplying technique 

which consumes more time to perform two subtasks, 

addition and shifting of the bits and hence consumes 2 to 8 

cycles of clock period.  

 

(b) Generating all the partial product bits in parallel and 

accumulate them using a multi-operand adder. This is also 

called as parallel multiplier by using the techniques of 

Wallace tree [10] and Booth algorithm [13],  
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(c) Using arrays of almost identical cells for generation of bit 

products and accumulation. The uses of Vedic Mathematics 

shows its application in fast calculations (multiplication, 

division, squaring, cubing, square root, cube root), 

trigonometry, three dimensional coordinate geometry, 

solution of plane and spherical triangles, linear and non-

linear differential equations, matrices and determinants, log 

and exponential[10]. The most interesting point is to note 

that the Vedic Mathematics provides unique solutions in 

several instances where trial and error method is available at 

present. Vedic Mathematics offers a fresh and highly 

efficient approach to mathematics covering a wide range - 

starts with elementary multiplication and concludes with a 

relatively advanced topic, the solution of non-linear partial 

differential equations. But the Vedic scheme is not simply a 

collection of rapid methods; it is a system, a unified 

approach. 

 

It is assumed that a usable circuit/system should function 

perfectly in conventional digital VLSI design, to always 

provide definite and accurate results. However, in our non-

digital worldly requests, such ideal operations are seldom 

needed. “Analog computation” that yields “good enough” 

results instead of totally accurate results [7] may in fact be 

acceptable. In fact, for many digital systems, the data they 

process have already contained errors. In applications such as 

a communication system, the analog signal coming from 

outside world must first be sampled before we can convert it 

to digital data at the front end of the system. The digital data 

is then processed and transmitted in a noisy channel before 

being converted back to the analog signal at the back end. 

During this process, errors may occur everywhere. 

Furthermore, due to the advances in transistor size scaling, 

the previously insignificant factors such as noise and process 

variations are becoming important impacts in today’s digital 

IC design [13].  

 

To grapple with aforementioned VLSI design dilemmas, one 

central and novel approach: Imprecise/approximate design 

have been anticipated by International Technology Roadmap 

for Semiconductors (ITRS) [10]. The expediency of 

imprecise/ approximate designs can be taken blessing of a 

novel SPAA metrics, resulting astonishing improvements in 

speed and/or power with a feeble accord in accuracy. 

Moreover, in recent years, emerging class of killer 

applications that manifest inherent error-resilience such as 

multimedia, graphics, and wireless communications has 

enraptured the concept of imprecise/approximate design that 

became a state-of-the-art demand. For example, in most 

multimedia applications, DSP blocks are implemented as 

their core that process signals relevant to human senses, e.g., 

sight and hearing. The verity of limited perception of human 

senses alleviates the constraints on accuracy, showing amity 

with imprecise/approximate designs. 

In accordance with error-resilience design, conventional 

wisdom investigate several mechanisms such as truncation 

[1] [2], over-clocking, and voltage over-scaling (VOS) [3], 

which were not able to configure SPAA metrics effectively. 

Beyond this end, some other scenarios such as functional 

approximations have been advised in literatures. 

Conventional adders such as carry-select (CSL) and carry-

look-ahead (CLA) have critical-path delay approximately 

logN, where N is bit-width; on the other hand, 

imprecise/approximate adders have been proposed by 

researchers via the concept of shorten carry-chain to elevate 

design performance. As imprecise/approximate design has 

attracted significant interest in recent years, apart the 

different design techniques, researchers investigate 

modeling, analysis, and synthesis approach for 

imprecise/approximate designs. 

 

This work proposes a Approximate multiplier providing the 

solution of the aforesaid problems adopting the sutra of 

Vedic Mathematics called Urdhva Tiryakbhyam (Vertically 

and Cross wise)[1,2,3]. It can be shown that the design MAC 

unit is highly efficient in terms silicon area/speed. 

 

2. Literature Review 
 

2.1 Adder Algorithms and Implementations 

 

In nearly all digital IC designs today, the addition operation 

is one of the most essential and frequent operations. 

Instruction sets for DSP's and general purpose processors 

include at least one type of addition. Other instructions such 

as subtraction and multiplication employ addition in their 

operations, and their underlying hardware is similar if not 

identical to addition hardware. Often, an adder or multiple 

adders will be in the critical path of the design, hence the 

performance of a design will be often be limited by the 

performance of its adders. When looking at other attributes 

of a chip, such as area or power, the designer will find that 

the hardware for addition will be a large contributor to these 

areas. It is therefore beneficial to choose the correct adder to 

implement in a design because of the many factors it affects 

in the overall chip. In this part we begin with the basic 

building blocks used for addition, then go through different 

algorithms and name their advantages and disadvantages.  

 

3. Basic Adder blocks  
 

3.1 Half Adder  
 
The Half Adder (HA) is the most basic adder. It takes in two 

bits of the same weight, and creates a sum and a carryout. 

The equation (1) and (2) are the Boolean equations for sum 

and carryout, respectively.  
  

 sum = a xor b (1) 

carryout = a and b (2) 

 

3.2 Full Adder  
 

The Full Adder (FA) is useful for additions that have 

multiple bits in each of its operands. It takes in three inputs 

and creates two outputs, a sum and a carryout. Equation (3) , 

(4) and (5) are the Boolean equations for the FA sum and FA 

carryout, respectively. In both those equations cin means 

carrying.  
 sum = a xor b xor cin (3) 

 carryout = a and b + b and cin + a and cin (4) 

 cin = a and b + (a + b)and cin (5) 

From the above equations we see that sum and carryout is 

depends on carryin. 
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3.3 Partial Full Adder 

 

The Partial Full Adder (PFA) is a structure that implements 

intermediate signals that can be used in the calculation of the 

carry bit. Revisiting the truth table for a FA, we extend it to 

include the signals generate (g), delete (d), and propagate (p). 

When g=1, it means carryout will be 1 (generated) regardless 

of carryin. When d=1, it means carryout will be 0 (deleted) 

regardless of carryin. When p=1, it means carryout will equal 

carryin (carryin will be propagated). The Boolean equations 

for the sum and carryout can now be written as functions of 

g,p, or d. Equations shows sum and carryout as functions of 

g and p (for Equation, p must be implemented. with the 

XOR). Figure 3 shows a circuit for creating the generate, 

propagate, and sum signals. It is a partial full adder because 

it does not calculate the carryout signal directly, rather it 

creates the signals needed to calculate the carryout signal.. 

 
Figure 2: Gate Schematic for a Partial Full Adder (PFA) 

Table 1: Extended Truth Table for a 1-bit adder 

 
  

 generate(g) = a and b (6) 

delete(d) = a  and b (7) 

 propagate(p) = a and b ( or a xor b ) (8) 

 sum = p xor carryin (9) 

 carryout = g or p and carryin (10) 

 

3.4 Ripple Carry Adder [14] 

 

The Ripple Carry Adder (RCA) is one of the simplest adders 

to implement. This adder takes in two N-bit inputs (where N 

is a positive integer) and produces (N + 1) output bits (an N-

bit sum and a 1-bit carryout). The RCA is built from N full 

adders cascaded together, with the carryout bit of one FA 

tied to the carryin bit of the next FA.The input operands are 

labeled a and b, the carryout of each FA is labeled cout 

(which is equivalent to the carryin (cin) of the subsequent 

FA), and the sum bits are labeled sum. Each sum bit requires 

both input operands and cin before it can be calculated. To 

estimate the propagation delay of this adder, we should look 

at the worst case delay over every possible combination of 

inputs. This is also known as the critical path. The most 

significant sum bit can only be calculated when the carryout 

of the previous FA is known. In the worst case (when all the 

carry outs are 1), this carry bit needs to ripple across the 

structure from the least significant position to the most 

significant position. Hence, the time for this implementation 

of the adder is expressed in Equation (11), where tRCAcarry 

is the delay for the carryout of a FA and tRCAsum is the 

delay for the sum of a FA. 

 

Propagation Delay(tRCAprop) = (N - 1) . tRCAcarry + 

tRCAsum (11) 

 

From Equation (11) , we can see that the delay is 

proportional to the length of the adder. An example of a 

worst case propagation delay input pattern for a 4 bit ripple 

carry adder is where the input operands change from 1111 

and 0000 to 1111 and 0001, resulting in a sum changing 

from 01111 to 10000. From a VLSI design perspective, this 

is the easiest adder to implement. One just needs to design 

and layout one FA cell, and then array N of these cells to 

create an N-bit RCA. The performance of the one FA cell 

will largely determine the speed of the whole RCA. From the 

critical path in Equation , minimizing the carryout delay 

(tRCAcarry) of the FA will minimize tRCAprop . There are 

various implementations of the FA cell to minimize the 

carryout delay [2]. 

 

3.5 Carry Look Ahead Adder [15] 

 

From the critical path equations in above Sections and 2th 

delay is linearly dependent on N, the length of the adder. It is 

also shown in Equations and that the t carryout signal 

contributes largely to the delay. An algorithm that reduces 

the time to calculate t carryout and the linear dependency on 

N can greatly speed up the addition operation. Equation 

shows that the carryout can be calculated with g, p, and carry 

in. The signals g and p are not dependent on carry in, and can 

be calculated as soon as the two input operands arrive. 

Weinberger and Smith invented the Carry Look Ahead 

(CLA) Adder [5]. Each subsequent carryout generated 

becomes increasingly difficult because of the large number 

of high fan-in gates [6].We see that the delay for a CLA 

adder is dependent on the number of levels of carry logic, 

and not on the length of the adder. If a group size of four is 

chosen, then the number of levels in an N-bit CLA and in 

general the number of levels in a CLA for a group size of k . 

For an N-bit CLA adder, each level of carry logic introduces 

two gate delays in addition to a gate delay for generate and 

propagate signals and a gate delay for the sum. This 

theoretically results in one of the fastest adder architectures. 

 

4. Multiplication Schemes 
 

Multiplication hardware often consumes much time and area 

compared to other arithmetic operations. Digital signal 

processors use a multiplier/MAC unit as a basic building 

block [5] and the algorithms they run are often multiply-

intensive. A multiplication operation can be broken down 

into two steps: 

1) Generate the partial products. 

2) Accumulate (add) the partial products. 
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Figure 3: Generic Multiplier Block Diagram 

 
Figure 4: Partial product array for an M *N multiplier: As 

shown it implies that M = N 

 

4.1 Array Multiplier  

 

From Equation, each multiplicand is multiplied by a bit in 

the multiplier, generating N partial products. Each of these 

partial products is either the multiplicand shifted by some 

amount, or 0. This is illustrated in Fig for an M * N 

multiplies operation. The generation of partial products 

consists of simple AND'ing of the multiplier and the 

multiplicand. The accumulation of these partial products can 

be done with rows of ripple adders. Thus, the carry out from 

the least significant bit ripples to the most significant bit of 

the same row, and then down the left side" of the structure. 

The partial products are added in ripple fashion with half and 

full adders. A full adder's inputs require the carry in from the 

adjacent full adder in its row and the sum from a full adder in 

the above row. Abdelgawad [9] states that finding the critical 

path in this structure is non-trivial, but once identified, 

results in multiple critical paths. It requires a lot of time to 

optimize the adders in the array since all adders in the 

multiple critical paths need to be optimized to result in any 

speed increase (this implies optimization of both the sum and 

carryout signals in a full adder). The delay basically comes 

down to a ripple delay through a row, and then down a 

column, so it is linearly proportional (td *(M +N)) to the sum 

of the sizes of the input operands. 

 

4.2 Tree Multiplier 

 

The tree multiplier reduces the time for the accumulation of 

partial products by adding all of them in parallel, whereas the 

array multiplier adds each partial product in series. The tree 

multiplier commonly uses CSAs to accumulate the partial 

products. 

 

4.2.1 Wallace Tree  

The reduction of partial products using full adders as carry-

save adders (also called 3:2 counters) became generally 

known as the \Wallace Tree" [14]. Figure shows an example 

of tree reduction for an 8*8-bit partial product tree. The ovals 

around the dots represent either a full adder (for three circled 

dots) or a half adder (for two circled dots). This tree is 

reduced to two rows for a carry-propagate adder after four 

stages. There are many ways to reduce this tree with CSAs, 

and this fig is just one of them. 

 
Figure 5: Wallace Tree for an 8 * 8-bit partial product tree 

 

4.3 Vedic Multiplication  

 

4.3.1 History of Vedic Multiplication 
Vedic mathematics is part of four Vedas (books of wisdom). 

It is part of Sthapatya- Veda (book on civil engineering and 

architecture), which is an upa-veda (supplement) of Atharva 

Veda. It covers explanation of several modern mathematical 

terms including arithmetic, geometry (plane, co-ordinate), 

trigonometry, quadratic equations, factorization and even 

calculus. Vedic mathematics is mainly based on 16 Sutras (or 

aphorisms) dealing with various branches of mathematics 

like arithmetic, algebra, geometry etc. 

 

4.3.2 Algorithms of Vedic Mathematics 
The proposed Vedic multiplier is based on the Vedic 

multiplication formulae (Sutras). These Sutras have been 

traditionally used for the multiplication of two numbers in 

the decimal number system. In this work, we apply the same 

ideas to the binary number system to make the proposed 

algorithm compatible with the digital hardware. Vedic 

multiplication based on some algorithms, some are discussed 

below: 

 

4.3.3 Urdhva– Triyagbhyam (Vertically & Crosswise) 
Urdhva tiryakbhyam Sutra is a general multiplication 

formula applicable to all cases of multiplication. It literally 

means “Vertically and Crosswise”. The conventional 

methods already know to us will require 16 multiplications 

and 15 additions. Urdhva-tiryakbyham[8] (Vertically and 

crosswise) deals with the Multiplication of numbers. The 

sutra has been traditionally used for the Multiplication of 

decimal number [10]. These are having several steps to be 

followed:-let us assume 2 digits no, 46 and 55.  

 Multiply the unit place digit, store its value in unit place 

while carry generated is forwarded to next no.(place 

value). 

 Now perform the Cross Multiplication of Unit and Ten's 

place value and store the result in addition with previous 

carry and multiplication value. If carry generated forward 

it to next place value. 
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  Now next perform the multiplication to the tens place 

digit and then add the result with forwarded carry.  

 

 
Algorithm for 4 x 4 bit Vedic multiplier Using Urdhva 

Tiryakbhyam (Vertically and crosswise) for two Binary 

numbers 

  

 X3 X2 X1 X0 (Multiplicand) 

 Y3 Y2 Y1 Y0 (Multiplier) 

…………………………………………… 
 P6 P5 P4 P3 P2 P1 P0 (Product)  

……………………………… 
 

Parallel Computation Methodology(cross product) 

X0/YO = XO×Y0 = P0 

X1X0 / Y1Y0 = (X1×Y0) + (X0×Y1) = P1 

X2X1X0 / Y2Y1Y0 =  

(X2×Y0) + (X0×Y2 ) + (X1×Y1) = P2  

X3X2X1X0 / Y3Y2Y1Y0 = 

(X3×Y0) + (X0×Y3) + (X2×Y1) + (X1×Y2) = P3 

X3X2X1 / Y3Y2Y1 = 

(X3×Y1) + (X1×Y3) + (X2×Y2) = P4 

X3X2 /Y3Y2 = X3×Y2) + (X2×Y3) = P5 

X3 / Y3 = X3 × Y3 = P6 

  

5. Conclusion 
 
This paper present design and implement a MAC [4, 5, 7] 

unit . In this work, our main focus is on performance and 

accuracy, but we do provide some numbers for the arithmetic 

units relating to energy and power. This is to provide an 

estimate of the amount of energy and power consumed by 

the units we choose to implement. Typically, embedded 

computing systems are required to achieve a required level of 

computing performance, with simultaneous and severe 

constraints on their characteristic such as power 

consumption, mobility and size. Moore’s law and the 

associated shrinking of transistor sizes, increase in mobility, 

decrease in size and power consumption has served as a 

driver for the proliferation and ubiquity of embedded 

systems. It is desirable for this trend to continue, to enable 

new applications and novel contexts in which embedded 

systems could be used. So due to this we use approximation , 

which will minimize size of chip. 
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