
National Conference in Applied Sciences and Humanities: NCASH-2017, 24
th

 – 25
th

 February 2017 

Thakur College of Engineering & Technology (TCET), Kandivali (E), Mumbai, India 

http://www.tcethns.cf 

International Journal of Science and Research (IJSR) 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Synchronization of Time-Delayed Chaotic Systems 

via Modified Adaptive Function Projective 

Synchronization Method 
 

Sana Parveen Ansari 
 

Department of Mathematics 

F.A.A. Govt. P.G. College, Mahmudabad 

Sitapur - 261203, India 

 sana.sadiq23@gmail.com 

 
Abstract: This article presents a new modified adaptive function projective synchronization method for the synchronization 

of time-delayed chaotic systems. The adaptive function projective synchronization controller and identification parameter 

laws are designed on the basis of Lyapunov-Krasovskii functional approach to stabilize the error system which makes the 

state vector of two chaotic systems asymptotically synchronized. The proposed method is effectively applied to examine the 

function projective synchronization for the pair of multiple time-delayed Rӧssler System for three different cases. The 

striking feature of the article is the successful graphical presentation of numerical simulation results, which are carried 

out by means of Runge-Kutta Method for delay differential equations and clearly demonstrate that the given modified 

method will be advantageous for getting faster function projective synchronization of time-delay chaotic systems. In this 

review article the author has carefully revisited an article [1] by Sudheer K. S. and Sabir M (Physics Letter A. 375 1176 

(2011)) and claim that the new proposed method is substantially more effective and reliable as compared to the said 

existing method for synchronizing time-delayed chaotic systems.  
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1. Introduction 
 

Synchronization is a vital phenomenon of chaos that may 

occur when at least two systems are coupled or one system 

drives the other. It is a difficult phenomenon because of 

the extreme dependence on initial conditions. During 

coupling the trajectories of the systems emerging from two 

different initial conditions will spread exponentially with 

time caused due to the transition between system 

variables, which encourages researchers to take challenges 

for the investigation of synchronization of coupled chaotic 

systems. There are several types of synchronization 

phenomena have been demonstrated and identified, such 

as complete, phase, anti-phase, hybrid, projective 

synchronizations etc. ([2] – [11]). Function projective 

synchronization between two systems is a generalization 

of projective synchronization, which is synchronized upto 

a scaling factor. This fascinating phenomenon is firstly 

taken care by Mainieri and Rehacek [12]. Delay 

differential equations have prospective applications in 

science and engineering ([13] – [18]) due to the presence 

of factors like process time existence of some stage 

structure, modeling via high dimensional compartmental 

models, estimation of parameters involved in the models 

etc. Research on synchronization of time delayed chaotic 

systems ([19]- [21]) has received impressive consideration 

of the researchers working in population dynamics, laser 

physics, physiological model, neural networks, control 

theory etc. ([22]–[26]) because of their characteristic 

connection to the systems with memory. 

In 2011, Sudheer and sabir [1] have investigated adaptive 

function projective synchronization with some 

modifications to synchronize the time-delayed chaotic 

systems and considered estimated parameters in response 

system. They have used Lyapunov stability theory during 

stabilization of error system, while in the present article 

the author has designed controller function with 

appropriate estimated parameters and used Lyapunov-

Krasovskii Functional approach ([27], 

[28]) to stabilize the error system. The Rӧssler system 

having the same parameter values and scaling function 

factors as in [1] is taken for Function Projective 

Synchronization throughout the comparison of 

effectiveness of the methods. It is seen that the time of 

synchronization through numerical simulation, which are 

carried out using Raunga-Kutta method for delay 

differential equation for proposed method, is less as 

compared to the exiting method [1].To authenticate 

proposed method another two cases for various initial 

conditions are accomplished with graphical plots along 

with the demonstration of graphs obtained using the 

method described in [1], which also establishes the fact 

that the proposed method gives the faster synchronization 

for different considered cases. 

 

 

2. Proposed Modified Adaptive Function   
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    Projective Synchronization Method  

    (PMAFPS) 

 
Consider the drive system in the form of 
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and the response system as 
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where 
nRyx ,  are the state vectors of systems (1) and 

(2) respectively, 1m
RA and 2m

RB  , are the 

unknown parameter vectors of the systems, 
nRyfxf )(),( , 1)(),(

nxm
Rygxg   and 
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Rtyhtxh   , are nonlinear 

functions, )(t  and )(t  represents the trajectories of 

the solutions in the past,   is the time delay and 
nRU   

is the controller. 

Let )()()()( tytxtte    represents the 

synchronization error vector, where )(t  is the scaling 

function matrix. The error dynamical system is 
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Let us design the nonlinear controller function and the 

adaptive parameter update laws as 
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where vectors )(ˆ tA  and )(ˆ tB  are the estimated values of 

unknown parameters A and B respectively, 

)(ˆ)(
~

tAAtA   and )(ˆ)(
~

tBBtB   are estimate 

errors. 

Using equation (4), the error dynamical system (3) is 

reduced to 
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Let us consider the Lyapunov-Krasovskii Functional [28] 

to carry out stability 

analysis as 
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The time derivative of V along the trajectory of error 

dynamical system is given by 
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where, )(ˆ)(
~ '' tAtA TT  and )(ˆ)(

~ '' tBtB TT  using 

adaptive parameters update laws, we get 
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where RV   is positive definite function and RV '
 is 

negative definite function. Thus 0)( tei  as t  i 

= 1, 2, 3. Therefore, the error system is asymptotically 

stable which means that PMAFPS between the systems (1) 

and (2) is achieved and it is also seen that the parameters’ 

estimation errors (t)A
~

 and (t)B
~

decay to zero as time 

goes to infinity. 

 

3. System Description 
 

A double delayed Rӧssler System is given by ([1], [29]) as 
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where 21,aa are the geometric factors while 21,bb  and 

c  are the usual parameters of a classical Rӧssler system, 

1  and 2  are time delays. The double delayed Rӧssler 

system exhibits the chaotic trajectories for the parameter 

values 

,7.5,2.0,2.0,5.0,2.0 2121  cbbaa

0.11  and 0.22  with initial condition 

)5.1,1,5.0())(),(),(( 321 txtxtx as shown in Figure 1, 

where .0 t  
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Figure 1: Phase portraits of Rӧssler system in x1-x2-x3 

space. 

 

4. Proposed Modified Adaptive Function  

    Projective Synchronization Between  

    Identical Rӧssler Systems 
 

In order to achieve PMAFPS behaviour the drive system is 

taken as (9) and the response system is given by 
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where )(),(),( 321 tututu are controllers and parameters 

),,,,( 2121 cbbaa of drive and response systems are 

unknown. Defining the error states as 

,3,2,1),()()()(  itytxtte iiii   

we get 
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According to our PMAFPS method, we take the 

synchronization controller as 
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and the estimated parameters as 
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which helps to accomplish the error system as 
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Now proceeding as section 2 with proper choices of 

controller and estimation of unknown parameters using 

parameter update laws, we may conclude that the 

PMAFPS between systems (9) and (10) is achieved. 

 

5. Numerical Simulation and Results 
 

To demonstrate the effectiveness of PMAFPS method, 

during the numerical simulation, the author has taken the 

initial conditions of state vectors of drive and response 

systems as (0.5, 1, 1.5) and (2.5, 2, 2.5) respectively. The 

true values of unknown parameter vectors of drive and 

response systems are selected as 

)7.5,2.0,2.0,5.0,2.0( 2121  cbbaa . 

The initial value of estimated parameters of unknown 

parameter vector is chosen as 

))(ˆ),(ˆ),(ˆ),(ˆ),(ˆ( 2121 tctbtbtata  = (0, 0, 0, 0, 0). To 

compare the results with the result proposed by Sudheer 

and Sabir [1], the parametric values of Rӧssler system are 

chosen as given in section 3, the scaling function factors 

are ),35sin(2)(1  tt )sin(5.1)(2 tt  and 

)cos(2)(3 tt   and the control input as 

),,( 321 kkk  = (2, 2, 2) as considered in [1]. Figures 2(a) 

and 2(b) represent that the errors 

0)(),(),( 321 tetete  and the convergence of 

estimated parameters to the original values after small 
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duration of time, which clearly show that in both the 

occasions it takes much lesser time in comparison with the 

results as obtained in Figures 3(a) and 3(b) through the 

method described in [1]. This validates the feasibility and 

effectiveness of the new proposed method. Figures 4(a), 

4(b), 5(a) and 5(b) depict the numerical simulation results 

of errors and estimated parameters using the proposed 

method and the existing method respectively for the initial 

conditions as (1, 1, 1) and (1.5, 1.5, 1.5) and also for 

scaling function factors 

),35sin(2)(1  tt )sin(5.1)(2 tt   and 

)cos(2)(3 tt  . Figures 6(a), 6(b), 7(a) and 7(b) 

describe those for initial conditions of drive and response 

systems as (2.5, 2, 2.5) and (0.5, 1, 1.5) respectively and 

for scaling function factors 

),05.0cos(1)(1 tt  )sin(2)(2 tt  and 

)10cos(3)(3  tt . 

 

 
 

Figure 2: (a) State trajectories of errors system and (b) 

The estimated parameters using the proposed method for 

the initial conditions of drive and response systems as 

(0.5, 1, 1.5) and (2.5, 2, 2.5) respectively. 

 

 
  

Figure 3: (a) State trajectories of errors system and (b) 

The estimated parameters obtained using [1] for the initial 

conditions of drive and response systems as (0.5, 1, 1.5) 

and (2.5, 2, 2.5) respectively. 

 

 
 

Figure 4: (a) State trajectories of errors system and (b) 

The estimated parameters using the proposed method for 

the initial conditions of drive and response systems as (1, 

1, 1) and (1.5, 1.5, 1.5) respectively. 
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Figure 5: (a) State trajectories of errors system and (b) The 

estimated parameters obtained using [1] for the initial 

conditions of drive and response systems as (1, 1, 1) and 

(1.5, 1.5, 1.5) respectively. 

 

 
 

Figure 6: (a) State trajectories of errors system and (b) 

The estimated parameters using the proposed method for 

scaling functions _1(t) = 1 + cos(0.05t), _2(t) = 2−sin(t), 

_3(t) = 3+cos(t+10) and the initial conditions of drive and 

response systems as (2.5, 2, 2.5) and (0.5, 1, 1.5) 

respectively. 

 

 
 

Figure 7: (a) State trajectories of errors system and (b) 

The estimated parameters obtained using [1] for scaling 

functions _1(t) = 1+cos(0.05t), _2(t) = 2−sin(t), _3(t) = 

3+cos(t+10) and the initial conditions of drive and 

response systems as (2.5, 2, 2.5) and (0.5, 1, 1.5) 

respectively. 

 

6. Conclusion 
 

In the present article the author has proposed a new 

method for function projective synchronization of time-

delayed chaotic systems through proper design of 

controller functions with corresponding parameter 

identification laws developed on the basis of Lyapunov-

Krasovskii stability theory. The technique is applied for 

function projective synchronization of identical Rӧssler 

system during numerical simulation to compare the results 

with the outcomes described in [1]. The principle highlight 

of the article is the demonstration of minimum time 

requirement for synchronization by applying the new 

method as compared to the earlier results for three 

different cases. The author is optimist that new proposed 

method will be valuable to the scientists and engineers 

working in the field of dynamical system especially those 

involved in synchronization of time-delayed chaotic 

systems. 
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