Synthesis, Structural And Electrical Studies of Mixed Lithium Hexaferrites Ceramics

Suresh. S. Darokar

Science College, Congress Nagar. Nagpur-12, India

Abstract: In the present investigation, the samples with substitution of Cobalt and Aluminium in Lithium ferrite (M-type) with the general chemical formula \(\text{Li}_0.5\text{Fe}_{0.5+x}\text{Al}_{12-2x}\text{Co}_{x}\text{O}_{19} \) were synthesized using reacting oxide by high temperature solid state reaction technique. The structural characterization of compound has been carried out from X-Ray diffraction powder pattern. The compounds are in single hexagonal phase without traces of uncertainly ambiguous reflection. From XRD pattern lattice parameters has recorded with increasing doped aluminum element in the range from \(a = 5.807 \text{ Å} \) to \(5.906 \text{ Å} \) and \(c = 22.507 \text{ Å} \) to \(22.585 \text{ Å} \) pertaining the space group \(\text{P6}_3/\text{mmc} \) (No.194). The mass density of the ferrites were found linearly varies and depends upon the mass and volume of sample. The X-Ray density has depends upon the lattice constant and molecular weight of the compounds. The average particle size was also estimated. The compounds were studies magnetically by using Guoy's method in the temperature range 300 to 550 K, the result shows that the compounds are paramagnetic in nature. The Curie molar constant was work out.

Keywords: Magnetoplumbite, Hexaferrites, Curie molar constant, Seebeck coefficient etc.

1. Introduction

In the family of hexagonal ferrites, the Magneto-plumbite hexaferrites (M-Type) created much attention due to wide range of application in industries and created potential to interest in technological and scientific research due to their application importance such as high density magnetic recording, microwave device materials, hard disc in computer system. The application need particularly magnetic and electrical specification with the view, many attempt have been improved the properties of hexagonal ferrites using different tract of additives. The calcium hexaferrites [1-6] have magnetic properties comparable to BaM and SrM. In Calcium ferrites many attempt has been made to replace \(\text{Fe}^{3+} \) ions with \(\text{Al}^{3+} \), \(\text{Cr}^{3+} \) and \(\text{Co}^{3+} \) etc. A compound with the combination of bivalent-tetravalent cation was also used to replace \(\text{Fe}^{3+} \) ion such as \(\text{Cu-Ti, Co-Ti, Co-Sn, Zn-Sn etc} [7, 8] \) without any appreciable change in BaM structure. When \(\text{Fe}^{3+} \) ions are replace by non magnetic ions like \(\text{Ti}^{4+} \) and \(\text{Sn}^{4+} \) etc. In the same way Lithium ferrites substituted with Al and Co has been studied structurally, electrically and magnetically [9]. In the present study a series of five sample with chemical formula \(\text{Li}_0.5\text{Fe}_{0.5+x}\text{Al}_{12-2x}\text{Co}_x\text{O}_{19} \) (\(x = 2, 3, 4, 5 \) and 6) were prepared. Lithium ferrites have attracted considerable attention because of the squareness of hysteresis loop coupled with superior temperature performance the crystal structure of M-type like compound with a space group \(\text{P6}_3/\text{mmc} \) (194) can be described as superposition of two structure block namely R-block with composition \(\text{BaFe}_6\text{O}_{19} \) and S-block with composition \(\text{Fe}_8\text{O}_8 \) [10] in the stoichiometric ratio.

5% of PVA as a binder are prepared by applying 10 tone pressure per square inch. These pellets slowly heated in the furnace at 600°C for 5 - 6 hours to remove binder. Then it was fired at 1200°C for 120 hours continuously, after that the furnace were cooled at the rate of 20°C per hours up to 100°C and then 50°C per hours and then cooled in natural way the phase of final sample were verified by Philips X-ray diffractometory using N-filter copper radiation. The mean grain size of multicosynthetic samples was in the range 150 - 200 Å. All the samples show single phase formation with a space group \(\text{P6}_3/\text{mmc} \) (194). X-ray pattern of the samples as shown in fig.1.1

The D.C resistivity was measure by the methods using LCR meter /Q meter.[11]. The end faces of pellets were coated with thin layer of conducting silver paste and measurement were made from room temperature to 800 K Thermoelectric power measurement were carried out after sandwiching the thick pellet between two copper rod from room temperature to 550°C

3. Result and Discussion

In the present work, the Cobalt and Aluminium substituted Lithium hexaferrites were introduced with general formula \(\text{Li}_{0.5}\text{Fe}_{0.5+x}\text{Al}_{12-2x}\text{Co}_x\text{O}_{19} \) (\(x = 2, 3, 4, 5 \) and 6). The ions in Ba-M compounds can be replaced partly by \(\text{Co}^{3+} \) or completely \(\text{Li}^{3+} \) and combination of \(\text{Fe}^{3+} \) and \(\text{Al}^{3+} \) ions without changing the crystal lattice symmetry [12]. In all the specimens substituted ions would be chosen to keep electrical neutrality and to have a similar ionic radii in these ferrites. The Cobalt and Aluminium play an important role in the property variation. XRD technique is used to confirms the formation of hexagonal M structure of compounds belonging to a space group \(\text{P6}_3/\text{mmc} \) (194) Homawalt 1956 Due to the resemblance of ionic radii of \(\text{Fe}^{3+} \)with\(\text{Co}^{3+} \) and \(\text{Al}^{3+} \) ions [13, 14]. The ferrites ions will replace by cobalt and aluminium. It is seen that former ions are very easily replaced at any substituted variation in all specimens [15]. The hexagonal lattice parameters ‘a’ and ‘c’ decreases linearly with the substutional variation \(\text{co}^{3+} \) and \(\text{Fe}^{3+} \)
concentration in all specimens. The decrease in lattice parameters due to close packing of lattices in the materials [16-18]. The decrease in lattice parameter and cell volume agree with result for Ba / Sr ferrite [19-20]. The numerical values of compositional data such as lattice constant, cell volume and X- ray density are tabulated in table -1. The observed value of electrical conductivity, activation energy and curie molar constant for specimens are also tabulated in table - 2

The plot of lnσ vs (1/ T) x 10³ K for the entire sample was almost linear. The electrical conductivity of these ferrites increases with increasing ferrite ion concentration. The electrical conductivity of sintered specimens varies from to 2.193 x10¹² Ω⁻¹ cm to 5.78 x10⁻⁶ Ω⁻¹ cm of these ferrites. The other workers have obtained a conductivity value of 2 x10⁻² Ω⁻¹cm for Li-ferrite that obtained is 2.3 x 10⁻⁶ Ω⁻¹ cm [21]

Table 1: Consolidated structural data of lithium ferrites

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Lattice parameters</th>
<th>Cell Volume</th>
<th>Mol. Wt</th>
<th>X-Ray Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li₀.₅Fe₂.₅Al₀.₈Co₂O₁₉</td>
<td>a (Å) 5.859</td>
<td>c (Å) 22.323</td>
<td>663.81</td>
<td>780.89</td>
</tr>
<tr>
<td>Li₀.₅Fe₆.₅Co₆O₁₉</td>
<td>5.695</td>
<td>21.262</td>
<td>597.22</td>
<td>1024.42</td>
</tr>
</tbody>
</table>

Table 2 : DC conductivity parameters of compounds

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Electrical Resistivity at room temperature. Ω cm⁻¹</th>
<th>Activation energy E in (eV)</th>
<th>Electrical Conductivity at room temperature. Ω⁻¹ cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li₀.₅Fe₂.₅Al₀.₈Co₂O₁₉</td>
<td>4.559 x10¹¹</td>
<td>0.77</td>
<td>2.193 x10⁻¹²</td>
</tr>
<tr>
<td>Li₀.₅Fe₆.₅Co₆O₁₉</td>
<td>1.72x10⁻³</td>
<td>0.39</td>
<td>5.78 x10⁻⁶</td>
</tr>
</tbody>
</table>

4. Conclusion

In the present work the electrical conductivity value obtained for the compounds are 2.193 x 10⁻¹² to 5.78 x 10⁻⁶ Ω cm. The value of the conductivity may be partly attributed to the low evaporation of lithium from the sample prepared different from these of Rozlescu etal 1974 and Venugopal Reddy 1981. The variation of activation energy with the substitutional variable parameters x -may be explain on the basis of Vewrway model [22-24], a small number of ferrous ions (Fe⁺²) are generally developed during sintering process which lead the conductivity in ferrites suggesting the hopping mechanism according (Fe⁺²-Fe⁺³+e⁻) [25,28]. However these transition take place for a very small interval of time and are not detectable by the ordinary method .This valence exchange mechanism of Verwey may be considered for these ferrites as general applicable to M-type ferrite.

5. Acknowledgement

Author is thankful to UGC, New Delhi for providing financial assistance to carried out this work under minor research project scheme.

References

[16] Kanke E, Takayama Muromachi Y.Uchida, Kato and S. Takikawa,
[24] V. Adelskod, Arkir Kemi Min Geo 12 A (1938)1