

Software Aging Analysis of the Linux Operating

System

Sneha sunny
1
, Sona Binoy

2
, Amitha Joseph

3

1Santhigiri College of Computer Sciences,

Vazhithala, Thodupuzha

bcab19_2233@santhigiricollege.com

2Santhigiri College of Computer Sciences,

Vazhithala, Thodupuzha

bcab19_2234@santhigiricollege.com

 3Assistant Professor, Computer Science Department,

Santhigiri College of Computer Sciences ,Vazhithala, Thodupuzha

amithajoseph@santhigiricollege.com

Abstract- Software systems running continuously for a long time tend to show degrading performance and an increasing failure occurrence

rate, due to error conditions that accrue over time and eventually lead the system to failure. This phenomenon is usually referred to as

software aging. Several long-running mission and safety critical application have been reported to experience catastrophic aging-related

failures. Software aging sources that is, aging-related bugs may be hidden in several layers of a complex software system, ranging from the

operating system (OS) to the user application level. This paper presents a software aging analysis at the operating system level, investigating

software aging sources inside the Linux kernel. The majority of the research efforts in studying software aging have focused on

understanding its effects theoretically and empirically.

Keywords- Software aging, Linux kernel, trend analysis

1. Introduction

Software Aging can be defined as a continued and growing

degradation of software’s internal state during its operational

life. This problem leads to progressive performance

degradation, occasionally causing system crashing. Due to its

cumulative property, it occurs more intensively in continuously

running systems that execute over a long period of time. It is

typically caused by accrued error conditions, such as round-off

errors, data corruption, storage space fragmentation, or

unreleased memory regions. Detecting and removing the

sources of software aging (i.e., the so-called aging-related bugs

[1]) is very difficult at testing time, since aging becomes

evident only after a long operational time. For this reason,

software aging represents one of the most subtle dependability

threats in today’s business- and safety critical software systems.

Past research work reported software aging phenomena that

manifested as the increasing consumption of Operating System

(OS) resources, such as free memory and swap space

exhaustion [2]–[4]. Subsequent studies found software aging

sources in several software applications, such as web servers

[4], telecommunication systems [5], and SOAP servers.

Therefore, several approaches were developed to predict the

time to failure at operational time, in order to plan proper

actions (that are usually referred to as software rejuvenation)

with an optimal schedule (i.e., neither too early, because it

would be expensive, nor too late, because a failure may occur

before rejuvenation).

Although relevant, the analysis of software aging sources at

application level represents only a partial view of the issue. In

fact, the OS itself can be a source of software aging

phenomena, since it is a large and bug-prone part of complex

software systems. Being able to detect and isolate the aging

contribution of the OS would yield insights about aging trends

for a wide number of applications based on it. Moreover, these

insights can be exploited for planning software rejuvenation

strategies tailored to the OS , as well as for identifying aging

related bugs in the OS code. In this work we carry out an

experimental campaign to analyze software aging inside the

Linux OS kernel. First, the study tests the presence of aging

sources at the OS level. The goal of this phase is to statistically

confirm if and in what extent the Linux kernel is actually

affected by aging-related bugs. A deeper analysis is then

carried out, with the goal of figuring out how the usage of each

internal subsystem impacts on aging trends. By means of a

kernel tracing tool specifically developed for this study, we

collected usage information about several subsystems, such as

memory management and the filesystem. Usage information

has been related with the observed aging trends, by means of

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 137

multiple linear regression and principal components analysis;

these relationships were exploited to find out kernel subsystems

responsible for aging phenomena.

2. What is Software Aging

Software aging is a phenomenon that occurs in all types of

software, regardless of who created it or how powerful the

software was when first purchased. Software aging is the

gradual degradation of coding in which fragmentation begins

manifesting itself, leading to slower performance and decreased

output. Software rejuvenation is aimed at correcting the errors

of aging, but it only offers a limited fix to the problem.

Continual upgrades to the software also exacerbate the aging

effects and the original coding becomes warped. Most users

find it easier, and less time consuming, to buy new software

instead of trying to maintain aging software. Software being

used for the first time is fresh and has not been introduced to

any degrading code, nor has its information been fragmented.

This means the program can run quickly, without problems. As

software aging progresses, the operating system will be able to

feed fewer resources into the program. With fewer resources

and degrading code, the software starts to cause lags or may

automatically shutdown. Upgrades, while seemingly good, can

have devastating effects on aging software. An upgrade

introduces new code. This new code can further the effects, or

visibility, of fragmented code. The upgrade also introduces

more code, which increases the size of the program. This means

even more resources are needed to produce the same output as

before the upgrade was added. Software rejuvenation has been

employed to correct the damaging effects of software aging.

There are many types of software rejuvenation techniques but,

overall, they aim to ease fragmentation and return the software

back to its original coding. Software rejuvenation offers a

limited fix, because it cannot correct all the errors, and is best

used on software that shows from low to medium signs of

aging. Years after getting a piece of software, the effects of

software aging will become unavoidable. The amount of time is

not set, because it depends on how well the program was made,

but 10 years is usually the upper range of when the effects of

aging make the program nearly unusable. Software

rejuvenation can correct some of the errors when the software

gets to this point, but the aging effects will still make it difficult

to use the program. When the software aging effects are

unavoidable, most users opt to purchase new software. The new

software will not need the same upkeep until later in its life and

will be able to produce a better output than the aged software.

Purchasing newer software, especially for businesses, frees up

human resources to work on other tasks or projects. This paper,

we test this hypothesis by analyzing aging sources inside the

OS. Our work relies on a workload- and measurement based

approach, in that we monitor the OS’s health under different

controlled workloads, collect data characterizing its behaviour,

and then analyze them to identify aging sources inside the

Linux kernel.

3. Reasons of Software Aging

Figure 1: flow chart reasons for software aging

3.1 Ignorant Surgery

Although it is essential to upgrade software to preventaging,

changing software can cause a differentform of aging. The

designer of a piece of softwareusually had a simple concept in

mind when writingthe program. If the program is large,

understandingthat concept allows one to find those sections of

theprogram that must be altered when an update or correction

is needed. Understanding that concept alsoimplies

understanding the interfaces used within thesystem and

between the system and its environment.Changes are made by

people who do not understand the original design concept

almost always causethe structure of the program to degrade.

Under thosecircumstances, changes will be inconsistent with

theoriginal concept; in fact, they will invalidate the original

concept. Sometimes the damage is small, but often it is quite

severe. After those changes, one mustknow both the original

design rules, and the newly introduced exceptions to the rules,

to understand theproduct. After many such changes, the

original designers no longer understand the product. Those

whomade the changes, never did. In other words,

nobodyunderstands the modified product. Software that

hasbeen repeatedly modified (maintained) in this waybecomes

very expensive to update. Changes takelonger and are more

likely to introduce new “bugs”.Change induced aging is often

exacerbated by thefact that the maintainers feel that they do not

havetime to update the documentation. The documentation

becomes increasingly inaccurate thereby makingfuture changes

even more difficult.

 Incorrect Upgrade

 Change by people don’t understand the system

 Bugs introduced during the upgrade

3.2 Lack of Movement

Over the last three decade, our expectations aboutsoftware

products has changed greatly. I can recallthe days when a

programmer would “patch” a program stored on paper tape by

using glue and paper.We were all willing to submit large decks

of cardsand to wait hours or days for the job to compile andrun.

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 138

When interactive programming first came in, wewere willing to

use cryptic command languages. Today, everyone takes on-line

access, “instant” response, and menu-driven interfaces for

granted. Weexpect communications capabilities, mass

onlinestorage, etc. The first software product that I built

(in1960) would do its job perfectly today (if I could finda

Bendix computer), but nobody would use it. Thatsoftware has

aged even though nobody has touched it.Although users in the

early 60’s were enthusiasticabout the product, today’s users

expect more. My oldsoftware could, at best, be the kernel of a

more convenient system on today’s market. Unless software

isfrequently updated, it’s user’s will become dissatisfied and

they will change to a new product as soon asthe benefits

outweigh the costs of retraining and converting. They will refer

to that software as old andoutdated.

 Not updated to meet changes

 Errors are let unfixed

 Documents not updated

 4. The Cost of Software Aging

1. Newer versions of software are frequently released. As

drivers become out of date, compatibility issues can occur with

newer software and operating system updates. Troubleshooting

these issues can be time consuming.

2. Hardware failures on the aging technology. Can be faced

with the option of waiting for a replacement machine to arrive

and be configured before the user can get back to work or of

potentially replacing the failed component at a high cost just to

keep the aging machine available. A common response to this

issue is, “If the computer fails, I will just run out to my nearest

store and purchase a replacement.” While you may get a

replacement machine quickly, the costs associated often can be

double the cost of a planned replacement. This is due to the fact

that retail store computers tend to be geared towards home

users and are not correctly configured for business networks.

3. Loss of employee productivity when using aging hardware.

A current-generation computer takes between 1-3 minutes to

complete the login process from a power-off state. Older

hardware can take upwards of 5 minutes, with some reaching

the 10-minute mark. As employee mailboxes grow in size,

machines that have lower amounts of memory and slower hard

drives can take longer to open email and to switch between

folders.

4. Costs associated with aging servers. In the case of a server,

sometimes the cost is not as evident. Aging servers can result

in higher support call volume for things such as email database

fragmentation or lack of drive space. As warranty support for

servers expires, there is the potential that failure can result in

lack of email and network access for an entire company. A

failed motherboard on an out-of-warranty server can take

several days to source parts for and repair.

During this time, the company network will be severely

impaired, if not completely unusable. The cost of such a failure

can be in the thousands of dollars.

Additionally, server operating systems give priority to

background and system processes, such as the mail server or

file server functions. Due to this, as a server ages and becomes

more overloaded, console-based actions are the first to exhibit

slowness. The act of adding an additional user account on a 1-

to-2-year-old server takes on average 5-15 minutes. A 5-year-

old server running a fully patched version of its original

operating system, hosting email, and file storage can take 10-20

minutes on average to log on to and add a user. As the required

action on the server gets more complex, the time required to

complete the action is also extended on the aging hardware.

This results in higher support costs for day-to-day operations

and maintenance on the server.

4.1 How often should replace technology

Based on this information, the recommended replacement

schedule for a server is 4.5-5 years. This will provide the

greatest discount on the manufacturer’s warranty contracts,

along with replacing the server before support costs and

productivity loss become too great. Desktops should be

replaced at most every five years, with power users replacing

on a more frequent schedule. Due to the additional abuse that

laptops experience, along with slower performance rating, a

laptop replacement schedule should be every four years, with

power users replacing more frequently.

5. Prevent Medicine
5.1 Design for success

This principle is known by various names:

 information hiding

 abstraction

 separation of concerns

 data hiding

 object-orientation

To apply this principle one begins by trying to characterize the

changes that are likely to occur over the “lifetime” of a

product.

Since actual changes cannot be predicted, predictions will be

about classes of changes:changes in the UI, change to a new

windowing system, changes to data representation, porting to a

new operating system. Since it is impossible to make

everything equally easy to change, it is important to:estimate

the probabilities of each type of change.Organize the software

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 139

so that the items that are most likely to change are “confined”

to a small amount of code.

5.2 Keeping Records

Even when software is well designed, it is often not

documented.

When documentation is present it is often:

 poorly organized

 inconsistent

 Incomplete

 written by people who do not understand the

system

Hence, documentation is ignored by maintainers. Worse,

documentation is ignored by managers because it does not

speed up the initial release.

5.3 Second opinion

In engineering, as in medicine, the need for reviews by other

professionals is never questioned.In designing a building, ship,

aircraft, there is always a series of design documents that are

carefully reviewed by others.

6 Effect Aging Linux Os

Aging sources actually exist in the Linux kernel; they

manifested as a statistically significant aging trend of memory

consumption. This result is of practical importance for final

users, which can benefit from a rejuvenation schedule that

individually takes into account aging at the OSand the

application layer. Moreover, the analysis of internal subsystems

identified a set of potential aging sources in the filesystem and

process management subsystem, which manifested a significant

contribution to the overall aging trend. A further experiment

allowed us also to quantify a non-negligible contribution of the

filesystem to the memory consumption trend, which impacts

the overall aging effects in a large, complex software

system.software aging inside the Linux OS kernel and affected

by aging-related bugs. Usage of each internal subsystem

impacts on aging trends.

System-wide and application-specific. System-wide provides

information related to subsystems that are shared and therefore

influenced by other system elements. Examples of shared

subsystems are OS, VM, and VMM levels. Indicators in this

category are often used to evaluate the aging effects in the

system as a whole and not for specific application process,

since their shared nature may cause noise in the measured data.

Examples of aging indicators in this category are free physical

memory, swap spaces size, among others. Application-specific

indicators provide specific information about an individual

application process and therefore give more accurate

information about the process than the system-wide indicators.

When the application process is running under a VM (e.g., java

programs) then indicators applied to the VM can also be used

as reference for the application being executed under the VM.

Examples of aging indicators in this category are resident size

of the process (RSS), JVM heap size, response time, the system

was stressed by means of a load generator,The load generator

stresses several subsystems (e.g., process management,

memory management) by using system calls provided by the

OS (e.g., by allocating memory and by writing to the disk). The

Process Management subsystem was also related to the aging

trend memory could be leaked when a new process is started,

or when a process exits. performance and resource usage.

Software aging manifests itself as resource depletion and

performance degradation. Data about the usage of OS

subsystems’ functionalities (i.e., the workload parameters, such

as number of interrupts or disk operations processed in a time

period).workload parameter correlated to aging phenomena can

be a symptom of aging bugs in a specific subsystem, therefore

these relationships can be exploited to diagnose aging

phenomena in OS subsystems. Aging indicators and workload

parameters

6.1 memory consumption (MC)

Memory consumption is given by: MC = TM −FM −PC (1)

where TM, FM, and PC are total memory, free memory, and

page cache size respectively. This metric is provided bythe

standard Linux kernel; it can be queried by means of the free

utility. The page cache contains a copy of recently accessed

files in kernel memory. Since the page cache can get all the free

memory not allocated by the kernel or user processes, its

memory consumption is quite large therefore, it is subtracted

from MC. The MC is periodically sampled and stored in a

trace.

6.2 system call latency (SCL)

The SCL indicator is considered since bugs that affect the

system performance, such as aging-related bugs, may affect

performance of services at the OS interface. Moreover,

performance degradation is a common symptom of aging

phenomena due to the accumulation of errors and stale

resources

7 Conclusion

(1) We cannot assume that the old stuff is known anddidn’t

work. If it didn’t work, we have to find out why.Often it is

because it wasn’t tried.

(2) We cannot assume that the old stuff will work.Sometimes

widely held beliefs are wrong.

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 140

(3) We cannot ignore the splinter softwareengineering groups.

Together they outnumber thepeople who will read our papers or

come to ourconferences.

(4) Model products are a must. If we cannot illustratea principle

with a real product, there may well besomething wrong with

the principle, Even if theprinciple is right, without real models,

the technologywon’t transfer. Practitioners imitate what they

see inother products. If we want our ideas tocatch on, we have

to put them into products. There is a legitimate, honorable and

important place for researchers who don’t invent new ideas but,

instead, apply, demonstrate, and evaluate old ones.

(5) We need to make the phrase “software engineer” mean

something. Until we have professional standards, reasonably

standardised educational requirements, and a professional

identity, we have no right to use the phrase, “Software

Engineering”.

References

[1] HESTER, S.D., PARNAS, D.L., UTTER, D. F.,

“Using Documentation as a Software Design Medium”, Bell

System Technical Journal, 60, 8, October 1981, pp. 1941-1977,

[2] PARNAS, D. L., WEISS, D. M., “Active Design Reviews:

Principles and Practices”, Proceedings of the 8th International

Conference on Software Engineering, London, August 1985.

Also published in Journal of Systems and Software, December

1987.

[3] VAN SCHOUWEN, A. J., PARNAS, D. L., MADEY, J.,

“Documentation of Requirements for Computer Systems”,

presented at RE ’93 IEEE International Symposium on

Requirements Engineering, San Diego, CA, 4-6 January, 1993.

[4] PARNAS, D. L., MADEY, J., “Functional Documentation

for Computer Systems Engineering (Version 2)”, CRL Report

237, CRL-TRIO McMaster University, September 1991, 14

pgs. (to be published in Science of Computer Programming)

[5] PARNAS, D, L., “Tabular Representation of Relations”,

CRLReport260,CRL.

Author Profile

Sona Binoy Pursuing Bachelor

of Computer Application from

Santhigiri college of Computer

Sciences, Vazhithala in 2019-2022

Sneha Sunny Pursuing Bachelor

of Computer Application from

Santhigiri college of Computer

Sciences, Vazhithala in 2019-2022

Amitha Joseph received the MCA

professional degree and MPhil in

Computer Science. She is currently

working as an assistant

professor in Santhigiri College

of Computer Sciences, Vazhithala.

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 141

