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Abstract- Deep learning is a technique that allows computational models composed of multiple processing layers to learn 

representations of data with multiple levels of abstraction. Deep learning recently plays an important role for solving SE 
tasks. Software engineering researchers solve problems of several different kinds. To do, we produce several different 

kinds of results, and they should develop appropriate evidence to validate these results. Deep learning is increasingly 
prevalent in the field of Software Engineering. The practicability becomes a concern in utilizing deep learning techniques 
and how to improve the effectiveness, efficiency, understandability, and testability of deep learning based solutions may 
attract more SE researchers in the future. 
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I. INTRODUCTION 

By the success of deep learning in data mining and pattern 
recognition, recent years have been witnessed an increasing 
trend for the industrial practitioners and academic researchers 

to integrate deep learning into Software Engineering tasks. For 
typical SE tasks, deep learning helps SE participators to extract  
the requirements from natural language text, generate source 
code, predict defects in software, etc. As an initial statistics of 

research papers in SE in this study, deep learning has achieved 
competitive performance against previous algorithms on about 
40 SE tasks.  
Despite the encouraging amount of papers and venues, there 

exists a little overview analysis on deep learning in SE. For eg, 
the common way to integrate deep learning into SE, the SE 
phases facilitated by deep learning, the interests of SE 
practitioners on deep learning, etc. Understanding these 

questions is important. On the one hand, it helps the 
practitioners and researchers get an overview understanding of 
deep learning in SE. On the next hand, practitioners and 
researchers can develop more practical deep learning models 

according to the analysis. For this purpose, this study conducts 
a bibliography analysis on research papers in the field of 

Software Engineering that use deep learning techniques. In 

contrast , bibliography analysis can reflect the overview trends, 
techniques, topics on deep learning in SE by statistical data  

We find that the deep learning has increased significantly in 
SE in recent years,  Both communities of SE and Artificial 
Intelligent (AI)  show great interests in utilizing deep learning 
in SE. Surprisingly, more than one fifth of research papers 

have industrial practitioners to participate in, which means that 
industrial practitioners are also interested in integrating deep 
learning into their SE solutions. Despite the encouraging 
success of deep learning, there are several concerns about 
using deep learning in SE. Practitioners and researchers worry 
about the practicability of utilizing a complex method with 
almost opaque internal representations like deep learning. 
Hence, the effectiveness and efficiency, understandability, and 
testability has become the burden to use deep learning in 
practice. Fortunately, recent studies have conducted some 
initial investigation on these problems. These findings may 
lead the future studies of using deep learning in SE.  
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I. EXAMPLE OF USING DEEP 
LEARNING IN SE 

Deep learning is a technique that allows the computational 
models composed of multiple processing layers to learn 
representations of data with multiple levels of abstraction. In 
this section, we are presenting an example of using deep 
learning in SE. In this example, we apply the deep learning 
model Auto Encoder on a typical SE task. That is, bug reports 
summarization.  

 

Fig.1 A framework to summarize bug reports 

Bug reports are texts to describe the bugs in software. Facing 
numerous bug reports, bug report summarization aims to 
generate a summary by extracting and highlighting informative 
sentences of a bug report to shorten the reading time. To 
identify informative sentences, the researchers utilize Auto 

Encoder to encode the words in bug report sentences in an 
unsupervised way. Since the hidden state of Auto Encoder 
provides a compressed representation of the input data, the 
weights of words in a bug report can be measured by 
calculating how much information of a word is reserved in the 
hidden states. Based on the word weights, informative 
sentences are identified. As shown in Fig. 1, the example 
consists of six important steps.   

1. SE data collection It decides the available data for an SE 
task. For a bug report summarization, the commonly 
available data are bug reports. Each bug report mainly 

contains a title, a description of the bug, and several 
comments.   

2. SE data preprocessing In this process, we removes the 
noises in SE data. For a bug report, the English stop words 

and some programming-specific ones are the noises. 
Besides, extremely short sentences are also noises, since 
they may be uninformative.  

3. Model selection and configuration select suitable deep 
learning models for SE data and decide model 

configurations, e.g., the number of layers and neural units 

of each layer. The widely used deep learning models 
include AutoEncoder, CNN, RNN, etc. (explained in Fig. 
3). These standard models usually have several variants, 
e.g., LSTM, Bi-LSTM, and attention-based RNN are 
classical variants of RNN. In this example, AutoEncoder 
is selected. AutoEncoder usually has a symmetric 
architecture, i.e., the number of neural units of input and 
output layers are the same. The output layer is defined as a 

pattern to reconstruct the input layer. The number of 
neural units of hidden layers decreases as towards the 

middle of the network. After training, the hidden states 
reserve the key information for reconstructing the input 

layer.  
4. Input construction transforms SE data into vectors for 

deep learning models. For bug report summarization, 
researchers calculate the word frequency in bug reports 
and transform the word frequency values into vectors. 

These vectors are regarded as a training set for Auto 
Encoder.    

5. Model training trains the designed model with the 
training set. A deep learning model usually has thousands 
of parameters representing the weights of connections 

among neural units. Hence, training the model is to tune 
these parameters according to the training set. For Auto 
Encoder, the parameters are trained by minimizing the 

difference between the input and output layers in an 
unsupervised way.   

6. Applying models is to utilize the trained model to solve 
SE problems. In this example, the trained model can 

encode the word frequency vector of a new bug report into 
the hidden states. We can trace and calculate the changes 
of the value in each vector dimension along with the 
encoding process, and then deduce the weights of words 
in each dimension. These word weights help researchers 

assign weights of the sentences and select informative 
ones.   

 

II. DATA COLLECTION 

To collect deep learning related papers in SE, we design three 
criteria to search research papers from four well-known digital 
libraries, including Web of Science, ACM Digital Library, 
IEEE Xplore, and Scopus.  

1. Research papers should contain at least one of the 
following SE phrases, including "software engineer*", 
"software develop*", "software test*", "software design", 
"requir* analysis", "software require*", "software 
maintain*", and "software manage*". The sign "*" is a 
wildcard character to match zero or more characters in a 

word.  

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 102 



    
            
3 
  

 
 

2. Research papers should contain at least one phrase about 

deep learning concept,that is, "deep learn*" and "neural 
network*".  

3. Research papers are conference or journal papers written 
in English on the topic of computer science.  

Under these criteria, 4,443 candidate research papers published 
before March 2018, including 414 from Web of Science, 207 
from ACM Digital Library, 2,271 from IEEE Xplore, and 
1,551 from Scopus. We remove the duplicate papers and short 

papers with less than 4 pages. At last, 3,351 research papers 
are reserved. We download and manually examine the contents 
of the papers:   

1. We remove 35 papers that the full-contents cannot be 
downloaded.   
 

2. We remove 2,441 papers that the searching phrases in C1 
and C2 merely match some supplementary information in 
the paper. For example, "software engineer*" may match 
the phrase of "school of software engineering" in author 
biography or the publication venue "Transaction on 

Software Engineering".  
 

3. After step 1 and 2, another 812 papers are removed as 
they do not focus on SE or deep learning. For example, 

"deep learning" is also a concept in computer education 
and "neural network" may refer to a shallow network 
structure with a single hidden layer.  

At the end, 63 research papers are remained. We take these 

papers as seeds to search their references and citations. If a 
new SE research paper about deep learning is found, we 

recursively examine the new paper. Finally, another 35 
research papers are found. Hence, we collect in total 98 
published or accepted research papers for analysis.  

 

III. BIBLIOGRAPHY ANALYSIS  

A. The prevalence of deep learning in SE  

Counting the number of research papers each year and the 
venues of the publications in Fig.2(a) and Fig. 2(b) 
respectively. In Fig. 2(a), we find that deep learning attracts 
little attention in SE for a long time, that is, only less than 3 

papers are published each year before 2015. The reason may 
be that although deep learning performs well on image 
processing, speech recognition, etc., it takes time for the 
practitioners and researchers in SE to validate deep learning on 
domain-specific SE tasks.  

For these research papers, we count the publication venues. 
Fig. 2(b) presents the publication venues that publish more 
than one paper. We explain these venue names in Fig. 2(c). We 

find that using deep learning in SE attracts the attention from 

both communities of SE and AI, including some premier SE 
venues like ICSE, ESEC/FSE, ASE, ICSME, ICPC and some 
renowned AI venues like AAAI, ICLR, ICML, NIPS, ACL, 
IJCAI. These venues may be a good guidance to study the 
progress of deep learning in SE.   

To conclude, deep learning is prevalent in SE. It attracts the 
attention from both SE and AI communities. Deep learning 
recently plays an important role for solving SE tasks. Software 

engineering researchers solve problems of several different 
kinds they should develop appropriate evidence to validate 

these results. 

 

Fig.2  Basic information of deep learning in SE 

B. The way to integrate deep learning into SE  

As the prevalence of deep learning in Software Engineering, 
we analyse the way to integrate deep learning into SE. Fig. 3 
shows the name of deep learning models and the number of 

papers using these models. Most studies directly transfer 
standard deep learning models into SE, including Auto 
Encoder, CNN, DBN, RNN and a simple fully-connected 
DNN. Meanwhile, the classical variants of these models in AI 
are also widely used such as SDAEs, LSTM, etc. The above 

models are used in 84.7% research papers. Besides using a 
single model, combined deep learning models also show 
competitiveness in SE, for eg a combination of RNN and 
CNN. For the remaining papers, researchers design specific 
deep learning architectures for SE data like Stepped 

AutoEncoder and TBCNN. The above phenomenon suggests 
that when integrating deep learning into SE tasks, a new 

practitioner may be willing to first try some standard models 
and their variants to investigate whether deep learning works 

or not.  

Furthermore, we investigate what types of SE data are usually 
fed into these models. The inputs can be categorized into five 

important categories.  
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1. Predefined software metrics - Researchers first manually 

define and calculate some software metrics, eg, lines of 
code, the number of bugs in source code. Then, they 
construct vectors based on the values of these metrics to 
feed into deep learning models.  

2. Dynamic software status - This category takes the 
dynamic information when running the software as input, 
e.g., the CPU utilization, the invoked APIs. The values of 
these dynamic information can be transformed into 

vectors for deep learning models.  
3. Raw text or source code without sequence - These papers 

treat the bag-of-words of text and source code as deep 
learning input without considering word sequences. Based 

on the bag-of-words, word embedding, one-hot 
representation and word frequency are widely used to 
transform words into vector space for deep learning.  

4. Raw text or source code in sequence - In contrast to 
category 3, this category considers as the sequence of 

words.  Such inputs are usually associated with RNN-
based models, which utilizes the order of words to predict 
the next word or class label of software documents and 
source code, eg learning and program synthesis.  

5. Others, int this category most of the other inputs are 

multimedia data such as images. For example, researchers 
utilize images to test deep learning models. The pixels of 
the images are fed into deep learning models.  

 

 

Fig.3  Deep learning models in the research papers 

To conclude, practitioners and researchers can achieve 

competitive results on more than 80% SE problems when only 
using standard deep learning models and their variants. Deep 
learning can well handle many types of SE data, including 
predefined software metrics, dynamic software status, and raw 
text or source code.  

C. The SE phases facilitated by deep learning  

Due to the diversity of SE tasks, it is important to identify the 

existing SE tasks facilitated by deep learning, since it helps 

practitioners find the potential to leverage deep learning in 

their own problems.  

As suggested by classical SE models, that is Waterfall Model 
and Incremental Model, SE can be divided into five phases, 

including requirement analysis, software design, development, 
testing and maintenance. In addition, since SE is an activity 
involving many stakeholders (developers, testers, project 
managers, etc.), we also add project management as an SE 
phase. Fig. 4 shows the SE tasks facilitated by deep learning in 

the six phases.   

In requirement analysis, deep learning helps requirement 
analysts automatically extract requirements from natural 

language texts. In software design, design patterns of software 
can be recognized. In software development, deep learning 
helps developers on 14 SE tasks from 30 research papers, 
including program learning and program synthesis, code 
suggestion, etc. Besides, software testing and maintenance are 
also major phases to attempt deep learning. There are 54 
research papers in these two phases which cover 21 SE tasks 
like defect prediction and reliability or changeability 

estimation. For the 41 SE tasks, program learning and program 
synthesis, malware detection, defect prediction, reliability or 

changeability estimation, and development cost or effort 
estimation are the top 5 tasks studied by the researchers. 

Hence, practitioners may have a board selection of 
methodologies and deep learning models when using deep 
learning on these tasks.  

 

Fig.4 The SE tasks solved by deep learning and participated by 
industrial practitioners. 

To conclude, deep learning has facilitated at least 41 SE tasks 

in all Software Engineering phases including requirement 
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analysis, software design, development, testing, maintenance, 

and project management. 

D. Research interests of industrial practitioners   

We analyse the SE tasks participated by industrial practitioners 
to understand research interests in practice.  

The industrial practitioners are identified when at least one 

author affiliation in the author list of a research paper is a 
company. In Fig.4, we label the industry participated SE tasks 
in bold and list the company names. There are 21 research 
papers (more than 1/5) on 13 SE tasks with at least one 
industrial practitioner, which implies the interest of industrial 

practitioners in integrating deep learning into SE problems. 
Among the 13 tasks, program learning and program synthesis 
attract the most attention. Eight research papers from four 
companies have tried deep learning on this task, including 
DeepMind, Facebook, Google, and Microsoft. Besides, 

practitioners also apply deep learning on SE tasks like 
malware detection, development cost or effort estimation etc., 

and achieve competitive results. Hence, deep learning is useful 
on these tasks from the perspective of practitioners. This 
finding provides a guidance for academic researchers to apply 
deep learning in practice.  

However, we finded out a mismatch from the top researched 
SE tasks and the industrial interests. For the top 5 tasks studied 
by deep learning in Fig. 4, only program learning and program 
synthesis, and malware detection attract more than one 

industrial practitioner to participate in. The reason may be that, 
on the one hand, practitioners have not found a suitable way to 
apply deep learning on other SE tasks in practice. On the other 
hand, practitioners already select some lightweight methods to 
solve these tasks. Hence, there is still a long way to apply a 

complex method like deep learning in industry.  

To conclude, practitioners participate in more than one fifth 
research papers. They benefit from deep learning on 13 SE 

tasks, including program learning and program synthesis, 
malware detection and lot more. 

E. Concerns to use deep learning in SE  

Despite the prevalence of improving SE tasks with deep 
learning, many concerns emerges on the practicability of using 
deep learning in SE. As this is a complex and almost opaque 

model, several factors limit the practicability of deep learning, 
it including the effectiveness, efficiency, understandability , 
and testability. But these kinds of issues may influence the 
development of deep learning in SE.   

Effectiveness and Efficiency - Recent studies show that by 
applying a simple optimizer Differential Evolution to fine tune 
SVM, it achieves similar results with deep learning on linking 
the knowledge unit in Stack Overflow. Most importantly, this 

method is 84 times faster than training deep learning models. 

The same phenomenon is also observed on code suggestion, in 
which an adapting n-gram language model specifically 
designed for software surpasses RNN and LSTM. Although 
techniques like off-line training and cloud computing may 
partially resolve the efficiency problem, there is still a trade-
off between deep learning and other lightweight, domain-
specific models. Such trade-off drives a deep investigation on 
deep learning. For eg, what types of SE data and tasks are 

suitable for deep learning and how to integrate the domain 
knowledge into deep learning.   

Understandability - The understandability is a burden to 
"control" deep learning. Recently, several methods are 
proposed to improve the understandability of deep learning. 
For example, practitioners in Facebook explore to visualize 
industry-scale deep neural networks. The proposed tool help 
software engineers understand the neuron activations, 

individual instances, classification results, and differences 
between activation patterns of deep learning. Such tool is a 

good start to increase the understandability of deep learning in 
SE.  

Testability – As this is considered as a complex model, the 

testability limits the security of applying deep learning in SE. 
Hence, researchers attempt to use software testing techniques 

to improve the testability of deep learning, that is deep 
learning testing. To test deep learning models, coverage testing 
and metamorphic testing are recently applied. Coverage testing 
validates whether all the neural units in deep learning are 
correctly activated or not. Metamorphic testing generates the 
test oracle for coverage testing. These studies demonstrate the 
importance of SE techniques on validating artificial 
intelligence techniques like deep learning. To conclude this 

session, the practicability of deep learning is still a rising and 
hot topic for SE practitioners and researchers.  

 

IV. CONCLUSION  

Deep learning recently plays an important role for solving SE 
tasks. In this study, we conduct a bibliography analysis on the 
status of deep learning in SE. We find that deep learning has 

been integrated into more than 40 SE tasks by both industrial 
practitioners and academic researchers. Most studies use 
standard deep learning models and their variants to solve SE 

problems. The practicability of deep learning may hider 
Software Engineering practitioners from using deep learning in 
practice, which is a rising and hot topic for further 
investigation and future use.   
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