

1

A Review Study on Bibliography Analysis Using

 Deep Learning and SE

Rahul Krishna1, Rajalakshmi Biju2, Aron Jose3

1Santhigiri College of Computer Sciences,
Vazhithala, Thodupuzha

bcab19_2223@santhigiricollege.com

2Santhigiri College of Computer Sciences,
Vazhithala, Thodupuzha

bcab19_2224@santhigiricollege.com

3Santhigiri College of Computer Sciences,
Vazhithala, Thodupuzha

mca2022_aronjose@@santhigiricollege.com

Abstract- Deep learning is a technique that allows computational models composed of multiple processing layers to learn

representations of data with multiple levels of abstraction. Deep learning recently plays an important role for solving SE
tasks. Software engineering researchers solve problems of several different kinds. To do, we produce several different

kinds of results, and they should develop appropriate evidence to validate these results. Deep learning is increasingly
prevalent in the field of Software Engineering. The practicability becomes a concern in utilizing deep learning techniques
and how to improve the effectiveness, efficiency, understandability, and testability of deep learning based solutions may
attract more SE researchers in the future.

Keywords- Deep learning, AutoEncoder, Bug report summarization, Effectiveness and efficiency, Metamorphic testing.

I. INTRODUCTION

By the success of deep learning in data mining and pattern
recognition, recent years have been witnessed an increasing
trend for the industrial practitioners and academic researchers

to integrate deep learning into Software Engineering tasks. For
typical SE tasks, deep learning helps SE participators to extract
the requirements from natural language text, generate source
code, predict defects in software, etc. As an initial statistics of

research papers in SE in this study, deep learning has achieved
competitive performance against previous algorithms on about
40 SE tasks.
Despite the encouraging amount of papers and venues, there

exists a little overview analysis on deep learning in SE. For eg,
the common way to integrate deep learning into SE, the SE
phases facilitated by deep learning, the interests of SE
practitioners on deep learning, etc. Understanding these

questions is important. On the one hand, it helps the
practitioners and researchers get an overview understanding of
deep learning in SE. On the next hand, practitioners and
researchers can develop more practical deep learning models

according to the analysis. For this purpose, this study conducts
a bibliography analysis on research papers in the field of

Software Engineering that use deep learning techniques. In

contrast , bibliography analysis can reflect the overview trends,
techniques, topics on deep learning in SE by statistical data

We find that the deep learning has increased significantly in
SE in recent years, Both communities of SE and Artificial
Intelligent (AI) show great interests in utilizing deep learning
in SE. Surprisingly, more than one fifth of research papers

have industrial practitioners to participate in, which means that
industrial practitioners are also interested in integrating deep
learning into their SE solutions. Despite the encouraging
success of deep learning, there are several concerns about
using deep learning in SE. Practitioners and researchers worry
about the practicability of utilizing a complex method with
almost opaque internal representations like deep learning.
Hence, the effectiveness and efficiency, understandability, and
testability has become the burden to use deep learning in
practice. Fortunately, recent studies have conducted some
initial investigation on these problems. These findings may
lead the future studies of using deep learning in SE.

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 101

mailto:bcab19_2224@santhigiricollege.com

2

I. EXAMPLE OF USING DEEP
LEARNING IN SE

Deep learning is a technique that allows the computational
models composed of multiple processing layers to learn
representations of data with multiple levels of abstraction. In
this section, we are presenting an example of using deep
learning in SE. In this example, we apply the deep learning
model Auto Encoder on a typical SE task. That is, bug reports
summarization.

Fig.1 A framework to summarize bug reports

Bug reports are texts to describe the bugs in software. Facing
numerous bug reports, bug report summarization aims to
generate a summary by extracting and highlighting informative
sentences of a bug report to shorten the reading time. To
identify informative sentences, the researchers utilize Auto

Encoder to encode the words in bug report sentences in an
unsupervised way. Since the hidden state of Auto Encoder
provides a compressed representation of the input data, the
weights of words in a bug report can be measured by
calculating how much information of a word is reserved in the
hidden states. Based on the word weights, informative
sentences are identified. As shown in Fig. 1, the example
consists of six important steps.

1. SE data collection It decides the available data for an SE
task. For a bug report summarization, the commonly
available data are bug reports. Each bug report mainly

contains a title, a description of the bug, and several
comments.

2. SE data preprocessing In this process, we removes the
noises in SE data. For a bug report, the English stop words

and some programming-specific ones are the noises.
Besides, extremely short sentences are also noises, since
they may be uninformative.

3. Model selection and configuration select suitable deep
learning models for SE data and decide model

configurations, e.g., the number of layers and neural units

of each layer. The widely used deep learning models
include AutoEncoder, CNN, RNN, etc. (explained in Fig.
3). These standard models usually have several variants,
e.g., LSTM, Bi-LSTM, and attention-based RNN are
classical variants of RNN. In this example, AutoEncoder
is selected. AutoEncoder usually has a symmetric
architecture, i.e., the number of neural units of input and
output layers are the same. The output layer is defined as a

pattern to reconstruct the input layer. The number of
neural units of hidden layers decreases as towards the

middle of the network. After training, the hidden states
reserve the key information for reconstructing the input

layer.
4. Input construction transforms SE data into vectors for

deep learning models. For bug report summarization,
researchers calculate the word frequency in bug reports
and transform the word frequency values into vectors.

These vectors are regarded as a training set for Auto
Encoder.

5. Model training trains the designed model with the
training set. A deep learning model usually has thousands
of parameters representing the weights of connections

among neural units. Hence, training the model is to tune
these parameters according to the training set. For Auto
Encoder, the parameters are trained by minimizing the

difference between the input and output layers in an
unsupervised way.

6. Applying models is to utilize the trained model to solve
SE problems. In this example, the trained model can

encode the word frequency vector of a new bug report into
the hidden states. We can trace and calculate the changes
of the value in each vector dimension along with the
encoding process, and then deduce the weights of words
in each dimension. These word weights help researchers

assign weights of the sentences and select informative
ones.

II. DATA COLLECTION

To collect deep learning related papers in SE, we design three
criteria to search research papers from four well-known digital
libraries, including Web of Science, ACM Digital Library,
IEEE Xplore, and Scopus.

1. Research papers should contain at least one of the
following SE phrases, including "software engineer*",
"software develop*", "software test*", "software design",
"requir* analysis", "software require*", "software
maintain*", and "software manage*". The sign "*" is a
wildcard character to match zero or more characters in a

word.

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 102

3

2. Research papers should contain at least one phrase about

deep learning concept,that is, "deep learn*" and "neural
network*".

3. Research papers are conference or journal papers written
in English on the topic of computer science.

Under these criteria, 4,443 candidate research papers published
before March 2018, including 414 from Web of Science, 207
from ACM Digital Library, 2,271 from IEEE Xplore, and
1,551 from Scopus. We remove the duplicate papers and short

papers with less than 4 pages. At last, 3,351 research papers
are reserved. We download and manually examine the contents
of the papers:

1. We remove 35 papers that the full-contents cannot be
downloaded.

2. We remove 2,441 papers that the searching phrases in C1
and C2 merely match some supplementary information in
the paper. For example, "software engineer*" may match
the phrase of "school of software engineering" in author
biography or the publication venue "Transaction on

Software Engineering".

3. After step 1 and 2, another 812 papers are removed as
they do not focus on SE or deep learning. For example,

"deep learning" is also a concept in computer education
and "neural network" may refer to a shallow network
structure with a single hidden layer.

At the end, 63 research papers are remained. We take these

papers as seeds to search their references and citations. If a
new SE research paper about deep learning is found, we

recursively examine the new paper. Finally, another 35
research papers are found. Hence, we collect in total 98
published or accepted research papers for analysis.

III. BIBLIOGRAPHY ANALYSIS

A. The prevalence of deep learning in SE

Counting the number of research papers each year and the
venues of the publications in Fig.2(a) and Fig. 2(b)
respectively. In Fig. 2(a), we find that deep learning attracts
little attention in SE for a long time, that is, only less than 3

papers are published each year before 2015. The reason may
be that although deep learning performs well on image
processing, speech recognition, etc., it takes time for the
practitioners and researchers in SE to validate deep learning on
domain-specific SE tasks.

For these research papers, we count the publication venues.
Fig. 2(b) presents the publication venues that publish more
than one paper. We explain these venue names in Fig. 2(c). We

find that using deep learning in SE attracts the attention from

both communities of SE and AI, including some premier SE
venues like ICSE, ESEC/FSE, ASE, ICSME, ICPC and some
renowned AI venues like AAAI, ICLR, ICML, NIPS, ACL,
IJCAI. These venues may be a good guidance to study the
progress of deep learning in SE.

To conclude, deep learning is prevalent in SE. It attracts the
attention from both SE and AI communities. Deep learning
recently plays an important role for solving SE tasks. Software

engineering researchers solve problems of several different
kinds they should develop appropriate evidence to validate

these results.

Fig.2 Basic information of deep learning in SE

B. The way to integrate deep learning into SE

As the prevalence of deep learning in Software Engineering,
we analyse the way to integrate deep learning into SE. Fig. 3
shows the name of deep learning models and the number of

papers using these models. Most studies directly transfer
standard deep learning models into SE, including Auto
Encoder, CNN, DBN, RNN and a simple fully-connected
DNN. Meanwhile, the classical variants of these models in AI
are also widely used such as SDAEs, LSTM, etc. The above

models are used in 84.7% research papers. Besides using a
single model, combined deep learning models also show
competitiveness in SE, for eg a combination of RNN and
CNN. For the remaining papers, researchers design specific
deep learning architectures for SE data like Stepped

AutoEncoder and TBCNN. The above phenomenon suggests
that when integrating deep learning into SE tasks, a new

practitioner may be willing to first try some standard models
and their variants to investigate whether deep learning works

or not.

Furthermore, we investigate what types of SE data are usually
fed into these models. The inputs can be categorized into five

important categories.

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 103

4

1. Predefined software metrics - Researchers first manually

define and calculate some software metrics, eg, lines of
code, the number of bugs in source code. Then, they
construct vectors based on the values of these metrics to
feed into deep learning models.

2. Dynamic software status - This category takes the
dynamic information when running the software as input,
e.g., the CPU utilization, the invoked APIs. The values of
these dynamic information can be transformed into

vectors for deep learning models.
3. Raw text or source code without sequence - These papers

treat the bag-of-words of text and source code as deep
learning input without considering word sequences. Based

on the bag-of-words, word embedding, one-hot
representation and word frequency are widely used to
transform words into vector space for deep learning.

4. Raw text or source code in sequence - In contrast to
category 3, this category considers as the sequence of

words. Such inputs are usually associated with RNN-
based models, which utilizes the order of words to predict
the next word or class label of software documents and
source code, eg learning and program synthesis.

5. Others, int this category most of the other inputs are

multimedia data such as images. For example, researchers
utilize images to test deep learning models. The pixels of
the images are fed into deep learning models.

Fig.3 Deep learning models in the research papers

To conclude, practitioners and researchers can achieve

competitive results on more than 80% SE problems when only
using standard deep learning models and their variants. Deep
learning can well handle many types of SE data, including
predefined software metrics, dynamic software status, and raw
text or source code.

C. The SE phases facilitated by deep learning

Due to the diversity of SE tasks, it is important to identify the

existing SE tasks facilitated by deep learning, since it helps

practitioners find the potential to leverage deep learning in

their own problems.

As suggested by classical SE models, that is Waterfall Model
and Incremental Model, SE can be divided into five phases,

including requirement analysis, software design, development,
testing and maintenance. In addition, since SE is an activity
involving many stakeholders (developers, testers, project
managers, etc.), we also add project management as an SE
phase. Fig. 4 shows the SE tasks facilitated by deep learning in

the six phases.

In requirement analysis, deep learning helps requirement
analysts automatically extract requirements from natural

language texts. In software design, design patterns of software
can be recognized. In software development, deep learning
helps developers on 14 SE tasks from 30 research papers,
including program learning and program synthesis, code
suggestion, etc. Besides, software testing and maintenance are
also major phases to attempt deep learning. There are 54
research papers in these two phases which cover 21 SE tasks
like defect prediction and reliability or changeability

estimation. For the 41 SE tasks, program learning and program
synthesis, malware detection, defect prediction, reliability or

changeability estimation, and development cost or effort
estimation are the top 5 tasks studied by the researchers.

Hence, practitioners may have a board selection of
methodologies and deep learning models when using deep
learning on these tasks.

Fig.4 The SE tasks solved by deep learning and participated by
industrial practitioners.

To conclude, deep learning has facilitated at least 41 SE tasks

in all Software Engineering phases including requirement

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 104

5

analysis, software design, development, testing, maintenance,

and project management.

D. Research interests of industrial practitioners

We analyse the SE tasks participated by industrial practitioners
to understand research interests in practice.

The industrial practitioners are identified when at least one

author affiliation in the author list of a research paper is a
company. In Fig.4, we label the industry participated SE tasks
in bold and list the company names. There are 21 research
papers (more than 1/5) on 13 SE tasks with at least one
industrial practitioner, which implies the interest of industrial

practitioners in integrating deep learning into SE problems.
Among the 13 tasks, program learning and program synthesis
attract the most attention. Eight research papers from four
companies have tried deep learning on this task, including
DeepMind, Facebook, Google, and Microsoft. Besides,

practitioners also apply deep learning on SE tasks like
malware detection, development cost or effort estimation etc.,

and achieve competitive results. Hence, deep learning is useful
on these tasks from the perspective of practitioners. This
finding provides a guidance for academic researchers to apply
deep learning in practice.

However, we finded out a mismatch from the top researched
SE tasks and the industrial interests. For the top 5 tasks studied
by deep learning in Fig. 4, only program learning and program
synthesis, and malware detection attract more than one

industrial practitioner to participate in. The reason may be that,
on the one hand, practitioners have not found a suitable way to
apply deep learning on other SE tasks in practice. On the other
hand, practitioners already select some lightweight methods to
solve these tasks. Hence, there is still a long way to apply a

complex method like deep learning in industry.

To conclude, practitioners participate in more than one fifth
research papers. They benefit from deep learning on 13 SE

tasks, including program learning and program synthesis,
malware detection and lot more.

E. Concerns to use deep learning in SE

Despite the prevalence of improving SE tasks with deep
learning, many concerns emerges on the practicability of using
deep learning in SE. As this is a complex and almost opaque

model, several factors limit the practicability of deep learning,
it including the effectiveness, efficiency, understandability ,
and testability. But these kinds of issues may influence the
development of deep learning in SE.

Effectiveness and Efficiency - Recent studies show that by
applying a simple optimizer Differential Evolution to fine tune
SVM, it achieves similar results with deep learning on linking
the knowledge unit in Stack Overflow. Most importantly, this

method is 84 times faster than training deep learning models.

The same phenomenon is also observed on code suggestion, in
which an adapting n-gram language model specifically
designed for software surpasses RNN and LSTM. Although
techniques like off-line training and cloud computing may
partially resolve the efficiency problem, there is still a trade-
off between deep learning and other lightweight, domain-
specific models. Such trade-off drives a deep investigation on
deep learning. For eg, what types of SE data and tasks are

suitable for deep learning and how to integrate the domain
knowledge into deep learning.

Understandability - The understandability is a burden to
"control" deep learning. Recently, several methods are
proposed to improve the understandability of deep learning.
For example, practitioners in Facebook explore to visualize
industry-scale deep neural networks. The proposed tool help
software engineers understand the neuron activations,

individual instances, classification results, and differences
between activation patterns of deep learning. Such tool is a

good start to increase the understandability of deep learning in
SE.

Testability – As this is considered as a complex model, the

testability limits the security of applying deep learning in SE.
Hence, researchers attempt to use software testing techniques

to improve the testability of deep learning, that is deep
learning testing. To test deep learning models, coverage testing
and metamorphic testing are recently applied. Coverage testing
validates whether all the neural units in deep learning are
correctly activated or not. Metamorphic testing generates the
test oracle for coverage testing. These studies demonstrate the
importance of SE techniques on validating artificial
intelligence techniques like deep learning. To conclude this

session, the practicability of deep learning is still a rising and
hot topic for SE practitioners and researchers.

IV. CONCLUSION

Deep learning recently plays an important role for solving SE
tasks. In this study, we conduct a bibliography analysis on the
status of deep learning in SE. We find that deep learning has

been integrated into more than 40 SE tasks by both industrial
practitioners and academic researchers. Most studies use
standard deep learning models and their variants to solve SE

problems. The practicability of deep learning may hider
Software Engineering practitioners from using deep learning in
practice, which is a rising and hot topic for further
investigation and future use.

V. REFERENCES

[1] Madala, K., Gaither, D., Nielsen, R., & Do, H.
Automated identification of component state transition

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 105

6

model elements from requirements. International
Requirements Engineering Conference Workshops.
2017. (pp.386-392).

[2] Joulin, A., & Mikolov, T. Inferring algorithmic patterns
with stack-augmented recurrent nets. NIPS’15. (pp. 190-
198).

[3] Tong, H., Liu, B., & Wang, S. Software defect prediction
[4] using stacked denoising autoencoders and two-stage

ensemble learning. IST’17.
[5] Pang, Y., Xue, X., & Wang, H. Predicting vulnerable

software components through deep neural network.
International Conference on Deep Learning
Technologies. 2017. (pp.6-10).

[6] Dahl, G. E., Stokes, J. W., Deng, L., & Yu, D. Large-
scale malware classification using random projections
and neural networks. International Conference on
Acoustics, Speech and Signal Processing. 2013. (pp.
3422-3426).

[7] Fu, W., & Menzies, T. Easy over hard: a case study on
deep learning. FSE’17. (pp.49-60).

[8] Kahng, M., Andrews, P.Y., Kalro, A., & Chau, D.H.P.
ActiVis: visual exploration of industryscale deep neural
network models. IEEE Transactions on Visualization and
Computer Graphics, 24(1), 2018. (pp.88-97).

[9] Tian, Y., Pei, K., Jana, S., Ray, B. DeepTest: automated
testing of deep-neural-network-driven autonomous cars.
ICSE’18.

[10] Li, X., Jiang, H., Liu, D., Ren, Z., & Li, G. Unsupervised
deep bug report summarization. ICPC’18.

[11] Munassar, N.M.A., & Govardhan, A. A comparison
between five models of software engineering.
International Journal of Computer Science Issues, 5,
2010.

 (pp.95-101).
[12] Dwivedi, A. K., Tirkey, A., Ray, R. B., & Rath, S. K.

Software design pattern recognition using machine
learning techniques. Region 10 Conference. 2016.
(pp.222-227).

[13] Huang, X., Ho, D., Ren, J., & Capretz, L.F. Improving
the COCOMO model using a neuro-fuzzy approach.
Applied Soft Computing, 7(1), 2007. (pp.29-40).

[14] Abd-El-Hafiz, S. 2000. Identifying objects in procedural
programs using clustering neural networks, Automated
Software Engineering 7(3): 239–261.

[15] Bergadano, F. and Gunetti, D. 1996. Testing by means of
inductive program learning, ACM Trans. Software
Engineering and Methodology 5(2): 119–145.

Author Profile

Aron Jose
Pursing the Master of Computer
Application from Santhigiri College of
Computer Sciences, Vazhithala in 2020
– 2022.

Rajalakshmi Biju
Pursing the Bachelor of Computer
Application from Santhigiri College of
Computer Sciences, Vazhithala in
2019 – 2022.

Rahul Krishna
Pursing the Bachelor of Computer
Application from Santhigiri College
of Computer Sciences, Vazhithala in
2019 – 2022.

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 106

	A Review Study on Bibliography Analysis Using
	 Deep Learning and SE

