

 A Review Analysis on Smart Contract
Vulnerabilities Using Blockchain

 Bibin Baby1, Alan Sunil2, Neetha Thomas3

1 BCA Scholar
Santhigiri College of Computer Sciences,

 Vazhithala, Thodupuzha, Idukki
bcaa19_2236@santhigiricollege.com

2 BCA Scholar

Santhigiri College of Computer Sciences,
 Vazhithala, Thodupuzha, Idukki

bcaa19_2208@santhigiricollege.com

3Assistant Professor
Department of Computer Science

Santhigiri College of Computer Sciences,
 Vazhithala, Thodupuzha, Idukki

neethathomas@santhigiricollege.com

Abstract: Smart Contracts have gained tremendous popularity in the past few years., to the point that billons of US Dollars are currently
exchanged very day through such technology. In this paper we advocate the need for a discipline of Blockchain Software Engineering,
addressing the issues posed by smart contract programming and other and other application running on blockchains. We analyze a case
of study where a bug discovered in a Smart Contract Library, and perhaps “unsafe” programming, allowed an attack on Parity, a wallet
application, causing the freezing of about 500K Ethers. In this study we analyze the source code of Parity and the Library, and discuss
how recognized best practices could mitigate, if adopted and adapted, such detrimental software misbehavior. We also specify the Smart
Contract software development, which make some of the existing approaches insufficient, and call for the definition of a specific
Blockchain Software Engineering.

 Keywords: smart contracts, blockchains, software engineering.

1. Introduction

Smart contracts are becoming more and more popular
nowadays. They were first conceived in 1997 and the idea
was originally described by computer scientist and
cryptographer Nick Szabo as a kind of digital vending
machine. He described how users could input data or value
and receive a finite item from a machine (in this case a
real-world snack or a soft drink).

More in general, smart contracts are self-enforcing
agreements, i.e. contracts, as we intend them in the real
world, but expressed as a computer program whose
execution enforces the terms of the contract. This is a clear
shift in the paradigm: untrusted parties demand the trust on
their agreement to the correct execution of a computer
program. A properly designed smart contract makes possible
a crow-funding platform without the need for a trusted third
party in charge of administering the system. It is worth
remarking that such a third party makes the system
centralized, where all the trust is demanded to a single party,
entity, or organisation.

Since smart contracts are stored on a blockchain, they are
immutable, public and decentralised. Immutability means
that when a smart contract is created, it cannot be changed
again and no one will be able to tamper with the code of a
contract. The decentralised model of immutable contracts

implies that the execution and output of a contract is
validated by each participant to the system and, therefore, no
single party is in control of the money. No one could force
the execution of the contract to release the funds, as this
would be made invalid by the other participants to the
system. Tampering with smart contracts become almost
impossible.

A smart contract does not necessarily constitute a valid
binding agreement at law. Some legal academics claim that
smart contracts are not legal agreements, but rather means of
performing obligations deriving from other agreements such
as technological means for the automation of payment
obligations or obligations consisting in the transfer of tokens
or cryptocurrencies. Additionally, other scholars have
argued that the imperative or declarative nature of
programming languages can impact the legal validity of
smart contracts.

With the 2015's implementation of Ethereum, based
on blockchains, "smart contract" is mostly used more
specifically in the sense of general-purpose computation that
takes place on a blockchain or distributed ledger. The US
National Institute of Standards and Technology describes a
"smart contract" as a "collection of code and data
(sometimes referred to as functions and state) that is
deployed using cryptographically signed transactions on the
blockchain network". In this interpretation, used for example
by the Ethereum Foundation or IBM, a smart contract is not

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 56

mailto:bcaa19_2236@santhigiricollege.com
mailto:bcaa19_2208@santhigiricollege.com

necessarily related to the classical concept of a contract, but
can be any kind of computer program.

A smart contract also can be regarded as a secured stored
procedure as its execution and codified effects like the
transfer of some value between parties are strictly enforced
and cannot be manipulated, after a transaction with specific
contract details is stored into a blockchain or distributed
ledger. That's because the actual execution of contracts is
controlled and audited by the platform, not by any arbitrary
server-side programs connecting to the platform.

In this paper we advocate the need for a discipline of
Blockchain Software Engineering, addressing the issues
posed by smart contract programming and other
applications running on blockchains. Blockchain Software
Engineering will specifically need to address the novel
features introduced by decentralised programming on
blockchains. These will be discussed in more detail in the
rest of this paper. We consider a case study, the recent attack
to the Parity wallet (2017). A bug discovered in a smart
contract library used by the Parity application, caused the
freezing of about 500K Ethers (see [3] for a summary). We
analyse the source code of Parity and the library, and reflect
on the specificity of smart contract software development,
noting some shortfalls of standard approaches to software
development. We then discuss how recognized best
practices in traditional Software Engineering could have
mitigated, if adopted and adapted, such detrimental
software misbehaviour. This paper aims to contribute a first
step towards the definition of Blockchain Software
Engineering.

2. BACKGROUND

This section presents general background information about
blockchain and smart contracts technologies. It also
discusses some blockchain platforms that support the
development of smart contracts.

 2.1. Blockchain Technology

A blockchain is a distributed database that records all
transactions that have ever occurred in the blockchain
network. This database is replicated and shared among the
network’s participants. The main feature of blockchain is
that it allows untrusted participants to communicate and
send transactions between each other in a secure way
without the need of a trusted third party. Blockchain is an
ordered list of blocks, where each block is identified by its
cryptographic hash. Each block references the block that
came before it, resulting in a chain of blocks. Each block
consists of a set of transactions. Once a block is created and
appended to the blockchain, the transactions in that block
cannot be changed or reverted. This is to ensure the integrity
of the transactions and to prevent double-spending problem.

Cryptocurrencies have emerged as the first generation of
blockchain technology. Cryptocurrencies are basically
digital currencies that are based on cryptographic
techniques and peer-to-peer network. The first and most
popular example of cryptocurrencies is Bitcoin. Bitcoin is

an electronic payment system that allows two untrusted
parties to transact digital money with each other in a secure

manner without going through a middleman (e.g., a bank).
Transactions that occurred in the network are verified by
special nodes (called miners). Verifying a transaction means
checking the sender and the content of the transaction.
Miners generate a new block of transactions after solving a
mathematical puzzle (called Proof of Work) and then
propagate that block to the network. Other nodes in the
network can validate the correctness of the generated block
and only build upon it if it was generated correctly.

However, Bitcoin has limited programming capabilities to
support complex transactions. Bitcoin, thus, does not support
the creation of complex distributed applications on top of it.

Other blockchains such as Ethereum have emerged as the
second generation of blockchain to allow building g complex
distributed applications beyond the cryptocurrencies. Smart
contracts, which will be discussed in the following section,
are considered as the main element of this generation.
Ethereum blockchain is the most popular blockchain for
developing smart contracts. Ethereum is a public blockchain
with a built-in Turing-complete language to allow writing any
smart contract and decentralized application.

There are two types of blockchain, namely, public and private
blockchain. In a public blockchain, any anonymous user can
join the network, read the content of the blockchain, send a
new transaction or verify the correctness of the blocks.
Examples of public blockchains are Bitcoin, NXT and
Ethereum. In a private blockchain, only users with
permissions can join the network, write or send transactions
to the blockchain. A company or a group of companies are
usually responsible for giving users such permissions prior to
joining the network. Examples of private blockchains are
Ever ledger, Ripple and Eris.

2.2. Smart Contracts

A smart contract is executable code that runs on the
blockchain to facilitate, execute and enforce the terms of an
agreement. The main aim of a smart contract is to
automatically execute the terms of an agreement once the
specified conditions are met. Thus, smart contracts promise
low transaction fees compared to traditional systems that
require a trusted third party to enforce and execute the terms of
an agreement. The idea of smart contracts came from Szabo in
1994. However, the idea did not see the light till the
emergence of blockchain technology. A smart contract can be
thought of as a system that releases digital assets to all or some
of the involved parties once arbitrary pre-defined rules have
been met. For instance, Alice sends X currency units to Bob, if
she receives Y currency units from Carl. Immutability means
that when a smart contract is created, it cannot be changed
again and no one will be able to tamper with the code of a
contract.The decentralised model of immutable contracts
implies that the execution and output of a contract is validated
by each participant to the system and, therefore, no single
party is in control of the money. No one could force the
execution of the contract to release the funds, as this would be

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 57

made invalid by the other participants to the system.
Tampering with smart contracts becomes almost impossible.

Nodes are called miners and each one maintains a consistent
copy of the ledger. Transactions are grouped together into
blocks, each hash-chained with the previous block.

Figure 1. Smart contract system

Many different definitions of a smart contract have been
discussed in the literature. In, the author classified all
definitions into two categories, namely, smart contract code
and smart legal contract. Smart contract code means “code
that is stored, verified and executed on a blockchain”. The
capability of this smart contract depends entirely on the
programming language used to express the contract and the
features of the blockchain. Smart legal contract means code
to complete or substitute legal contracts. The capability of
this smart contract does not depend on the technology, but
instead on legal, political and business institutions. The
focus of this study will be on the first definition, which is
smart contract code.

A smart contract has an account balance, a private storage
and executable code. The contract’s state comprises the
storage and the balance of the contract. The state is stored on
the blockchain and it is updated each time the contract is
invoked. Figure 1 depicts the smart contract system. Each
contract will be assigned to a unique address of 20 bytes.
Once the contract is deployed into the blockchain, the
contract code cannot be changed. To run a contract, users
can simply send a transaction to the contract’s address. This
transaction will then be executed by every consensus node
(called miners) in the network to reach a consensus on its
output. The contract’s state will then be updated accordingly.
The contract can, based on the transaction it receives,
read/write to its private storage, store money into its account
balance, send/receive messages or money from users/other
contracts or even create new contracts.

2.3 Ethereum Smart Contracts

A blockchain by a contract-creation transaction. A SC is
identified by a contract address generated upon a successful
creation transaction. A blockchain state is therefore a newly

mapping from addresses to accounts. Each SC account holds
a number of virtual coins (Ether in our case), and has its own
private state and storage. An Ethereum SC account hence
typically holds its executable code and a state consisting of:

 private storage
 the number of virtual coins (Ether) it holds, i.e., the

 contract balance.

Users can transfer Ether coins using transactions, like in
Bitcoin, and additionally can invoke contracts using contract
invoking transactions. Conceptually, Ethereum can be
viewed as a huge transaction-based state machine, where its
state is updated after every transaction and stored in the
blockchain. A Smart Contract’s source code manipulates
variables in the same way as traditional imperative programs.
At the lowest level the code of an Ethereum SC is a
stack-based bytecode language run by an Ethereum virtual
machine (EVM) in each node. SC developers define
contracts using high-level programming languages. One
such language for Ethereum is Solidity [4] (a JavaScript-like
language), which is compiled into EVM bytecode. Once a
SC is created at an address X, it is possible to invoke it by
sending a contract-invoking transaction to the address X. A
contract-invoking transaction typically includes:

 payment (to the contract) for the execution (in Ether).
 input data for the invocation.

 A contract-creation transaction containing the EVM
bytecode for the contract in Figure 2 is sent to miners.
Eventually, the transaction will be accepted in a block, and
all miner will update their local copy of the blockchain: first
a unique address for the contract is generated in the block,
then each miner executes locally the constructor of the
Puzzle contract, and a local storage is allocated in the
blockchain. Finally, the EVM bytecode of the anonymous
function of Puzzle (Lines 16+) is added to the storage.

To ensure fair compensation for expended computation
efforts and limit the use of resources, Ethereum pays miners
some fees, proportionally to the required computation.
Specifically, each instruction in the Ethereum bytecode
requires a pre-specified amount of gas (paid in Ether coins).
When users send a contract-invoking transaction, they must
specify the amount of gas provided for the execution, called
gas Limit, as well as the price for each gas unit called gas
Price. A miner who includes the transaction in his proposed
block receives the transaction fee corresponding to the
amount of gas that the execution has actually burned,
multiplied by gas Price. If some execution requires more gas
than gas Limit, the execution terminates with an exception,
and the state is rolled back to the initial state of the execution.
In this case the user pays all the gas Limit to the miner as a
counter-measure against resource-exhausting attacks.
Solidity, and in general high-level SC languages, are Turing
complete in Ethereum. In a decentralised blockchain
architecture Turing completeness may be problematic, e.g.,
the replicated execution of infinite loops may potentially
freeze the whole network.

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 58

3. STRUCTURE AND FUNCTIONALITY OF PARITY

Parity is an Ethereum client that is integrated directly into
web browsers. It allows the user to access the basic Ether and
token wallet functions. It is also an Ethereum GU browser
that provides access to all the features of the Ethereum
network, including DApps (decentralised applications).
Parity also operates as an Ethereum full node, which means
that the user can store and manage the blockchain on his own
computer. It is a complex and critical decentralised
application.

Solidity and the EVM provide three ways to call a function
on a smart contract: CALL, CALL-CODE, and
DELEGATECALL. The former is a call to a function that
will be executed in the environment of the called contract.
The other two calls execute the called code in the caller
environment. Many libraries call on Ethereum are
implemented with DELEGATE-CALL, typically by
deploying a contract that serves as a library: the contract has
functions that anyone can call, and these may be used, for
instance, to make changes in the storage of the calling
contracts. Solidity has some syntactic constructs which allow
libraries offering DELEGATE-CALLs to be defined and”
imported” by other contracts. However, at the EVM level the
library construction disappears, and DELEGATECALLs
and other calls are actually deployed as smart contract
functionalities.

 Figure 2: Parity Wallet Dependency Graph

Figure 3 shows the diagram of the functions and their
dependencies for the Parity smart contract. Every call to the
library will now return false and the multi-signature wallet
contracts relying on the library contract code would get zero
(with DELEGATE-CALL). The contracts still hold funds,
but all the library code is set to zero. The multi-signature
wallets are locked and the majority of the functionalities
depend on the library which returns zero for every function
call. The choice of defining the Wallet library as a contract
instead of as a library, with the actual wallets making simple
DELEGATE-CALLs to this linked smart contract, also
needs to be confronted with the recommended practice of
clearly defining libraries as such. Such a choice, makes the
library contract behave more like a Singleton than a proper
Library.

4. ROAD-MAP TO BOSE

 The Parity wallet case study clearly showed that a
Blockchain-Oriented Software Engineering (BOSE) is
needed to define new directions to allow effective software
development. New professional roles, enhanced security and
reliability, modelling and verification frameworks, and
specialized metrics are needed in order to drive blockchain
applications to the next reliable level. At least three main
areas to start addressing have been highlighted by our
analysis of a specific case of study:

 Best practices and development methodology

 Design patterns

 Testing

 The aim of BOSE is to create a bridge between traditional
software engineering and blockchain software development,
defining new ad-hoc methodologies, fault analysis patterns
quality metrics, security strategies and testing approaches
capable of supporting a novel and disciplined area of
software engineering.

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 59

5. DECENTRALIZED LEDGERS

A blockchain is essentially a shared ledger that stores
transactions, holding pieces of information, in a decentralized
peer-to-peer network. Nodes are called miners and each one
maintains a consistent copy of the ledger. Transactions are
grouped together into blocks, each hash-chained with the
previous block. Such a data structure is the so called
blockchain, Miners use a consensus protocol in order to agree
on the validity of each block, called Nakamoto Consensus
Protocol. At any time, miners group their choice of incoming
new transactions in a new block, which they intend to add to
the public blockchain. Nakamoto consensus uses a
probabilistic algorithm for electing the miner who will publish
the next valid block in the blockchain. Such a miner is the one
who solves a computationally demanding the graph of
cryptographic puzzle. Such a procedure is called
proof-of-work. All other miners verify that the new block is
correctly constructed (e.g., no virtual coin is spent twice) and
update their local copy of the blockchain with the new block.
Bitcoin transactions essentially record the transfer of coins
from one address, a wallet say, to another one. Differently,
Ethereum transactions also include contract creation
transactions and contract-invoking transactions. The former
ones record a smart contract on the blockchain, and the latter
ones cause the execution of a contract functionality (which
enforces some terms of the contract). We refer the reader to
the original white papers of Bitcoin and Ethereum for further
details.

6. SECURITY AND SMART CONTRACTS

The smart contracts on Ethereum are generally written in high
level language and then are compiled in EVM bytecodes. The
most prominent and most widely adopted is Solidity, it is used
even in other blockchain platforms. Solidity is a contract
oriented high level programming language whose syntax is
similar to Javascript.

 A smart contract analysis carried out by Bartoletti and
Pompianu shows that Bitcoin and Ethereum primarily focus
on financial contracts. The direct handling of the assets means
that the flaws are more likely to be relevant to the security and
have greater financial consequences that the errors on typical
applications, as evidenced by the DAO attack on Ethereum.

According to Alharby and van Moorsel, the current
investigation on smart contracts has its focus on identifying
and addressing the smart contract’s issues and they classify
them in the following four categories: codification, security,
privacy and problems of performance. The technology behind
Ethereum’s smart contracts is still in the early stages, thus,
codification and security are the most discussed topics.

6.1. Security Challenges in Ethereum

Security is the main concern when talking about Ethereum’s
programming owing to the following factors:

 Unknown runtime environment: Ethereum is different to

the centrally administered runtime environments, either
mobile, desktop or in the cloud. Developers are not used to
their code being executed in a global network of
anonymous nodes, without a secure relationship and with a
profit reason.

 New software stack: The Ethereum stack (the Solidity
compiler, the EVM, the consensus layer) is still in the
developing stages, and security vulnerabilities are still
being discovered.

 Highly limited ability to correct contracts: A deployed
contract cannot be corrected; hence, it has to be correct
before the deployment. This opposes the traditional
software development process that promotes iterative
techniques.

 Financially motivated anonymous attackers: In

comparison with several cibernetic crimes, exploiting
smart contracts offers greater incomings
(cryptocurrencies’ price has rapidly risen), facility for the
charging (the ether and the tokens can be instantly
commercialized) and a minor risk of punishment due to
the anonymity and the lack of legislation on the subject
matter.

 Rapid pace of development: Blockchain companies make
an effort to rapidly launch their products, usually at the
expense of the security. Sub-optimal high-level language:
Some investigations claim that Solidity as itself leads the
developers to unsecure development techniques.

6.2. Design Challenges and Patterns Usage

Understanding how smart contracts are used and how they are
implemented could help smart contracts platforms’ designers
to create new domain-specific languages, which, with their
designs, avoid vulnerabilities such as the ones that are being

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 60

outlined posteriorly. In addition, this knowledge could help
improve the analysis techniques for smart contracts, by using

promoting the usage of contracts with specific programming
patterns. To this day, little efforts have been made in the
collection and categorization of patterns and the toolbox they
use in an organized way. In the following bullet points, a
general description of the typical design patterns that are
inherently frequent or practical when talking about the
codification of smart contracts.

Authorization: This pattern is used for restricting the code in
accordance with the invoker’s direction. The vast majority of
analysed contracts verify if the invoker’s direction is the same
as the direction of the owner of the contract, before carrying
out critical operations (for instance, sending ether, calling the
method suicide or self-destruct).

 Oracle: Is possible that some contracts have to acquire data
outside the blockchain. The Ethereum platform does not allow
the contracts to consult external sites: otherwise, the
determinism of the calculations would break, due to the fact
that different nodes could receive different results for the same
consultation. The oracles are the interface between the
contracts and the outside.

 Randomization: Since the execution of the contract needs to
be deterministic, all the nodes have to obtain the same
numerical value when requesting a random number: this
conflicts with the desired randomization requirements.

Time limitations: Many contracts require the implementation
of time restrictions, for instance, for specifying when an action
is allowed. All the contracts beings.

7. CONCLUSION

 In this paper, we presented a study case regarding the Parity
smart contract library. The problem resulted from poor
programming practices that led to the situation in which an
anonymous user was able to accidentally (it is not clear if he
did it on purpose) freeze about 500K Ether (150M USD on
November 2017). We investigated the case, analysing the
chronology of the events and the source code of the smart
contract library. We found that the vulnerability of the library
was mainly due to a negligent programming activity rather
than a problem in the Solidity language.

The vulnerability was exploited by the anonymous user in two
steps. First the attacker was able to become the owner of the
smart contract library (because it was created and left
uninitialized), then the attacker did nothing more than calling
the initialization function. After that the suicide function was
called, which killed the library, leading to the situation in
which it was not possible to execute functionality on the smart
contracts created with the library, because all the delegate
calls ended up in the dead smart contract library. This case
clearly demonstrated a need for Blockchain Oriented Software
Engineering in order to prevent, or mitigate such scenarios.
The aim for BOSE is to pave the way for a disciplined, testable
and verifiable smart contract software

development.

8. REFERENCE

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” 2008.
[2] “Ethereum foundation. the solidity contract-oriented
language.” https:
//github.com/ethereum/solidity., 2014.
[3] “A postmortem on the parity multi-sig library
self-destruct,” https://paritytech.io/
a-postmortem-on-the-parity-multi-sig-library-self-destruct/,
2017.
[4] “Ethereum foundation. ethereum original white paper.”
https://github.
com/ethereum/wiki/wiki/White-Paper, 2014.
[5] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor,
“Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
Conference
on Computer and Communications Security. ACM, 2016, pp.
254–269.
[6] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena,
“Demystifying incentives
in the consensus computer,” in Proceedings of the 22nd ACM
SIGSAC
Conference on Computer and Communications Security.
ACM, 2015,
pp. 706–719.
[7] D. Siegel, “Understanding the dao attack,”
http://www.coindesk.com/ -dao-hack-journalists, 2016.
[8] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks
on
ethereum smart contracts sok,” in Proceedings of the 6th
International
Conference on Principles of Security and Trust - Volume
10204. New
York, NY, USA: Springer-Verlag New York, Inc., 2017, pp.
164–186.
[Online]. Available:
https://doi.org/10.1007/978-3-662-54455-6 8
[9] C. Cadar and K. Sen, “Symbolic execution for software
testing: three
decades later,” Commun. ACM, vol. 56, no. 2, pp. 82–90,
2013.
[Online]. Available:
http://doi.acm.org/10.1145/2408776.2408795
[10] M. Harman and P. McMinn, “A theoretical and empirical
study of
search-based testing: Local, global, and hybrid search,” IEEE
Trans.
Software Eng., vol. 36, no. 2, pp. 226–247, 2010. [Online].
Available:
https://doi.org/10.1109/TSE.2009.71

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 61

https://doi.org/10.1109/TSE.2009.71

Author Profile

Bibin Baby UG scholar in BCA in
Santhigiri College of Computer Sciences, Vazhithala.

Alan Sunil UG scholar in BCA in
Santhigiri College of Computer Sciences, Vazhithala.

Neetha Thomas Asst. Professor in
Santhigiri College of Computer Sciences, Vazhithala.

International Conference on Interllectual Property Rights, 20/02/2021

Santhigiri College of Computer Sciences, Idukki, Kerala, India 62

	1. Introduction
	2. Background
	3. Structure and Functionality of Parity
	7. Conclusion

