International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064, Impact Factor (2013): 4.438 www.ijsr.net

Optical Absorption Behavior of Li₂O-Al₂O₃-P₂O₅Glasses Mixed with Nd₂O₃

T. Srikumar¹, Ch. Srinivasa Rao², N. Krishna Mohan³, K. Srilatha⁴, K. Ramachandra Rao⁵, M.C. Rao⁶

¹Department of Physics, Andhra Loyola College, Vijayawada-520008, A.P., India

²Department of Physics, Andhra Loyola College, Vijayawada-520008, A.P., India

³Department of Physics, A.N.R. College, Gudivada-521301, A.P., India

⁴Department of Physics, Ch. S. D. St. Theresa's Autonomous *College* for Women, Eluru-534003 A.P., India

⁵Crystal Growth and Nano Science Research Centre, Department of Physics, Government College (A), Rajahmundry-533105

⁶Department of Physics, Andhra Loyola College, Vijayawada-520008, A.P., India

*Corresponding author: raomc72@gmail.com

Abstract: $Li_2O-Al_2O_3-P_2O_3g$ lasses mixed with Nd_2O_3 have yielded useful applications in laser industry. $Li_2O-Al_2O_3-P_2O_3g$ lasses mixed with Nd_2O_3 have been prepared by melt quenching method and the systematic studies like optical absorption behavior of $Li_2O-Al_2O_3-P_2O_5$ glass doped with 1.0 mol% of Nd_2O_3 systems have been carried out. The existence of Nd^{3+} in these glasses is expected to influence their physical properties to a large extent since these ions exist in different valence states. The optical absorption spectra of $Li_2O-Al_2O_3-P_2O_5$ glass doped with 1.0 mol% of Nd_2O_3 is recorded at room temperature in the wavelength region 300-2000 nm exhibited all from the ground state ${}^4I_{9/2}$; these levels are assigned to the appropriate electronic transition.

Keywords: Li₂O-Al₂O₃-P₂O₅, Melt quenching, Nd2O3, Spectroscopic properties

1. Introduction

A glass is defined as an inorganic product of fusion which has been cooled to a rigid condition without crystallization. According to this definition, a glass is a non crystalline material obtained by a melt-quenching process [1]. Nowadays, non crystalline materials that cannot be distinguished from melt-quenched glasses of the same composition are obtainable by using various techniques such as chemical vapor deposition, sol-gel process, etc. The macroscopic properties of a glass such as optical transmission and absorption, refraction of light, thermal expansion, etc. are observed always equally in all directions, provided that the glass is free from stress and strain. That is, a glass is an isotropic material, whereas crystalline materials are generally anisotropic. During the last few decades a large variety of inorganic glasses have been developed with an attempt to achieve suitable optical, electrical and mechanical characteristics. These characteristics are associated with the improved physical properties such as electrical resistance, mechanical strength, glass transparency, IR transmission performance and their ability to accept rare earth and transition metal ions for their use in solid-state devices.In the Periodic Table, elements from lanthanum (Z = 57) to lutetium (Z = 71) are known as lanthanides. These are fblock elements with $4f^n 5s^2 5p^6$ as the outer most electronic configuration of the trivalent states of these elements. As the 4f sub shell of these ions is filled there is shrinkage in the volume of these ions and this is known as lanthanide contraction. This contraction is due to imperfect shielding from the nuclear charge of one f electron followed by another

electron. All the rare-earths exist in trivalent state and some occasionally in divalent and tetravalent states. These rareearth ions are associated with the f-f and f-d transitions. Among these rare earth ions Neodymium (Nd^{3+}) is a good doping compound for improving the properties of prepared glass systems. Ajith Kumar et al. [2] studied the optical absorption spectrum of Nd³⁺ ions in phosphate glasses of varying matrix environments has been recorded in the ultra violet, visible and near infrared region. From the absorption spectra, various spectroscopic parameters such as Slater-Condon (F₂, F₄ and F₆), spin-orbit ($\xi 4f$), Racah (E¹, E² and E^s), nephelauxetic (β), bonding (δ) and Judd-Ofelt (J–O) $(\Omega 2, \Omega 4 \text{ and } \Omega 6)$ intensity parameters were evaluated. De la Rosa-Cruz et al. [3] studied the spectroscopic properties of Nd³⁺ in barium fluoroborophosphate glassy matrix have been analyzed by fitting the experimental data with the standard Judd-Ofelt theory. Various spectroscopic parameters, viz. radiative transition probabilities, radiative decay time, fluorescence branching ratios, electric dipole line strengths, stimulated emission cross-sections and optical gain of the principal fluorescence transition from the ⁴F_{3/2} metastable level were obtained to evaluate the potential of the samples as laser material. Results show that addition of borate content to the fluorophosphate matrix will reduce the fluorescence spectral properties of Nd³⁺.In the present investigation we prepared Neodymium (Nd₂O₃) doped Li₂O-Al₂O₃-P₂O₅ glass systems using melt quenching technique and characterized by different spectroscopic studies.

2. Experimental

For the present study, the chosen composition is $(30-x)Li_2O-10Al_2O_3-60P_2O_5$: xNd_2O_3 with x = 1.0 mol%. The details of the compositions are:

Nd₀: 30 Li₂O -10Al₂O₃- 60P₂O₅

 $Nd_1: 29 Li_2O - 10Al_2O_3 - 60P_2O_5: 1.0Nd_2O_3$

Analytical grade reagents of P_2O_5 , Li_2CO_3 Al_2O_3 and Nd_2O_3 powders in appropriate amounts (all in mol%) were thoroughly mixed in an agate mortar, calcinated at about 400°C for 2 h in a platinum crucible and subsequently melted in the temperature range of 1000 to 1200°C in an automatic temperature microprocessor controlled furnace for about 30 minutes. The resultant bubble free melt was then poured in a pre-heated brass mould and annealed at 300°C in another furnace. The samples prepared were mechanically ground and optically polished to the dimensions of 1cm× 1cm× 0.2 cm (Fig. 1).

Fig. 1 Images of pure and doped glasses of the $Li_2O-Al_2O_3$ - P_2O_5 glass system

3. Characterization

The density of the glasses was determined to an accuracy of (± 0.0001) by the standard principle of Archimedes' using oxylene (99.99% pure) as the buoyant liquid. The mass of the samples was measured to an accuracy of 0.1 mg using Ohaus digital balance Model AR2140 for evaluating the density. The optical absorption spectra of the glasses were recorded to a resolution of 0.1 nm at room temperature in the spectral wavelength range covering 250-900 nm using JASCO Model V-670 UV-VIS-NIR spectrophotometer.

4. Results and Discussion

The composition of Li₂O - Al₂O₃ - P₂O₅: Nd₂O₃ glass system is an admixture of glass formers, modifiers and intermediates. P2O5 is a strong glass forming oxide, participates in the glass network with PO₄ structural clusters. The PO₄ tetrahedra are linked together with covalent bonding in chains or rings by bridging oxygens. Neighbouring phosphate chains are linked together by cross-bonding between the metal cation and two non-bridging oxygen atoms of each PO₄ tetrahedron. The presence of such PO₄ units in the titled glass samples is evident from the IR spectral studies [4, 5]. Among various rare earth ions, Nd³⁺ doped glasses that give rich emission in the ultraviolet, visible and near infrared region (at $\sim 2.0 \ \mu m$). The introduction of Neodymium ions in the glass network will create bond defects liberating non bridging oxygen atoms (NBOs) and also suitable cations for giving rich emission. So these glasses are best candidates for lazing materials.From the measured values of the density and

average molecular weight M of the samples, various other physical parameters such as rare earth ion concentration Ni, mean rare earth ion separation R_i and molar volume for all the glass samples were evaluated and presented in Table 1.

Table 1 Physical parameters of Li ₂ O–Al ₂ O ₃ –P ₂ O ₅	glasses
doped with Nd ₂ O ₃	

Gl ass	Den sity (g/cm ³)	Avg . Mol. Wt. (g)	M ol. Vol (cm ³ / mol)	r i (Å)	(A°)	N (10 ² 1, ions / cm ³)	F ield Stren gth (10 ¹⁵)	b and gap (eV)
Ν	2.51	104.	41	-		-		4
\mathbf{d}_{0}	4	32	.48	-		-		.35
Ν	3.04	107.	35	3	15	0	0	4
d ₁	1	69	.41	9.55	.67	.17	.12	.80

The study of optical absorption, particularly the absorption edge, has proved to be very useful for elucidation of the electronic structure of the materials. It is possible to determine whether the optically induced transition is direct or indirect and allowed or forbidden by analysis of the absorption edge. The optical absorbance of glass system has been studied in the vicinity of the fundamental absorption edge. The optical absorption spectra of $Li_2O - Al_2O_3 - P_2O_5$ pure glass recorded at room temperature in the wavelength region 300-2000 nm exhibited no absorption bands (Fig. 2).

Fig. 2 Optical absorption spectra of Li₂O–Al₂O₃–P₂O₅

glassrecorded at room temperature From the observed absorption edges, we have evaluated the optical band gaps (E_o) of these glasses by drawing Tauc plot between $(\alpha \hbar \omega)^{1/2}$ and $\hbar \omega$ as per the equation:

 $\alpha(\omega) \hbar \omega = C (\hbar \omega - E_o)^2 - \dots (1)$

Fig. 3 represents the Tau plot of this glass in which a considerable part of each curve is observed to be linear. From the extrapolation of the linear portion of these curves, the values of optical band gap (E_0) obtained for $Li_2O - Al_2O_3 - P_2O_5$ glass is presented in Table 1.

The optical absorption spectra of Li₂O- Al₂O₃-P₂O₅glass doped with 1.0 mol% of Nd₂O₃ is recorded at room temperature in the wavelength region 300-2000 nm exhibited all from the ground state ${}^{4}I_{9/2}$; these levels are assigned to the following appropriate electronic transition

Tauc plots of Li₂O–Al₂O₃–P₂O₅ glasses doped with of Sm³⁺ ions were drawn from Fig. 4 and optical band gap was estimated.

5. Conclusion

Li₂O-Al₂O₃-P₂O₅pure glass and Li₂O-Al₂O₃-P₂O₅glass doped with 1.0 mol% of Nd₂O₃ systems are prepared by melt quenching method. The systematic studies like physical parameters evaluation and optical absorption behavior of Li₂O-Al₂O₃-P₂O₅pure glass and Li₂O-Al₂O₃-P₂O₅glass doped with 1.0 mol% of Nd₂O₃ systems have been carried out. Optical absorption spectra of Li₂O-Al₂O₃-P₂O₅pure glass recorded at room temperature in the wavelength region

300-2000 nm exhibited no absorption bands. The optical absorption spectra of Li₂O-Al₂O₃-P₂O₅glass doped with 1.0 mol% of Nd₂O₃ is recorded at room temperature in the wavelength region 300-2000 nm exhibited all from the ground state ${}^{4}I_{9/2}$; these levels are assigned to the appropriate electronic transition.Summing up the entire work presented in this project it is felt that the study of various physical and spectroscopic properties of Li₂O-Al₂O₃-P₂O₅glasses doped with Nd₂O₃ have yielded some valuable information which will be useful for the practical applications of these materials in the laser industry.

References

- [1] American Society for Testing Materials [ASTM], Standards on Glass and Glass Products, prepared by ASTM Committee C14, April1955.
- [2] G. Ajith Kumar, P.R. Biju, C. Venugopal, and N.V. Unnikrishnan. "Spectroscopic studies of sm³⁺ doped phosphate-glasses". Journal of Non-Crystalline Solids, ELESVIER, 221, pp. 47-58, 1997.
- [3] E.De la Rosa -Cruz, G.A. Kumar, L.A.Diaz-Torres, A.Martinez, and O.Barbosa-Garcia, "Opticalabsorption and luminescence properties of Nd³⁺ in mixed alkali borate".Optical Materials, ELESVIER,18, pp.32-33, 2001.
- [4] S. [A.Saleem, B.C.Jamalaiah, J.S.Kumar, A.M. Babu, L.R. Moorthy, M.Jayasimhadri, K.Jang, and J.H. Jeong, "Optical absorption and near infrared emission properties of Nd3+ ions in alkali lead tellurofluoroborate glasses". Solid State Sciences, ELESVIER,11,pp. 2093-2098.2009
- [5] Zhong, B.Chen, G.Ren, L.Cheng, L.Yao and J.Sun, "Enhanced emission of 2.7µm from Er3+/Nd3+-codoped LiYF4 single crystals". Journal of Applied Physics, AIP, 106, 083114, 2009

UGC Sponsored National Conference on

Advanced Technology Oriented Materials (ATOM-2014), 8-9th Dec-2014 Department of Physics, Government College (A), Rajahmundry, Andhra Pradesh, India Paper ID: ATOM2014_14 Licensed Under Creative Commons Attribution CC BY