Volumetric Analysis of the Paranasal Sinuses using CT among Chronic Sinusitis Conditions

Abbas Omer¹, Mohamed Yousef¹,², Mohammed, A. Ali Omer¹,³, Mogahid M.A Zidan⁴, Wafaa Abbas¹

¹Sudan University of Science and Technology, College of Medical Radiological Science, Khartoum, Sudan
²Radiologic Sciences Program, Batterjee Medical College, Jeddah, Saudi Arabia
³Qassim University, College of Applied Medical Science, Radiologic Technology Department, Buraidah, Saudi Arabia
⁴College of Medical Radiological Science and Nuclear Medicine, The National Ribat University, Khartoum, Sudan

Abstract: The volume of air sinuses offers values that are more accurate and closest to their natural measurements and contributes to diagnosing sinus pathologies. The study aimed to compare paranasal sinus volumes of chronic rhinosinusitis patients with unaffected controls in Saudi Arabia using Computerized tomography scans (n=151), which processed by axial manual segmentation of the air sinuses using a 3D Slicer Program to construct a three dimensional (3D) volume model of each PAS bilaterally. The sample consisted of 50 normal controls and 101 patients with chronic sinusitis (73 males and 78 females, age ranging from 1 to 83 years). They were divided into two age groups: > 20 years (43) and < 20 years (108). The result showed that: the commonly involved gender with sinus pathologies was the female, with a 53.5% relative to male. The chronic sinusitis infected older ages (> 20 years old) with a percent of 81.18% more than the younger one (< 20 years old) with a percent of 18.81%. The commonly involved sinuses were the maxillary sinus, ethmoidal, frontal, and the sphenoid sinuses. The mean bilateral maxillary and ethmoid sinus volumes in the chronic sinusitis patients were smaller than that in the normal or control group, also reveals that the mean bilateral frontal and sphenoid sinus volumes in the chronic sinusitis patients were similar to the normal or control group.

Keywords: Paranasal Sinuses, chronic sinusitis, volumetric, CT.

1. Introduction

The Para-nasal sinuses are hollow, air-filled spaces located within the bones of the face and base of the skull surrounding the nasal cavity. There are four pairs of sinuses, each connected to the nasal cavity by a small canal. They include the frontal, ethmoidal, maxillary, and sphenoid sinuses [1]. They develop as diverticula of the nasal cavity at the end of the third intrauterine month, maintaining communication via patent Ostia [2]. These out pouchings expand into the maxillary, sphenoid, frontal and ethmoid bones by the growth of the mucous membrane sacs. This may be regarded as primary pneumatization [3]. Various methods have been utilized in the literature to measure the volume of the PAS.

In the latest studies, volumetric rendering techniques and three-dimensional (3D) reconstruction models have been developed [4-6]. Currently, CT imaging is the radiological technique of choice for analyzing the PAS, as the distinction between bone, mucosa, and other soft tissue can be clearly defined [5]. According to Lee et al., [7] 3D reconstructions from these CT images can yield a more precise form 3D morphology of the PAS. The literature reviewed reveals that the volume of air sinuses is the most important parameter that can establish its size. These normal values may be useful in diagnosing sinus pathologies [8]. There appears to be wide variation in paranasal sinus anatomy [8], [9], but the cause for these differences and their impact on sinonasal disease is unclear [10-12], and is frequently associated with chronic sinus disease [12]. This raises the relevant question of whether the relationship between sinus pneumatization and mucosal disease can be applied as a generalization. This remains incompletely resolved because paranasal sinus pneumatization has been difficult to quantify. The role of decreased paranasal sinus pneumatization in the development of CRS is also unclear. Kim et al. found that CRS patients had similar paranasal sinus pneumatization compared to healthy controls, although CF patients demonstrated impaired sinus development [13]. That study, however, was restricted to a volumetric and dimensional analysis of the maxillary sinus in children and adolescents age 4 to 17. There have been reports of decreased maxillary sinus volume in patients with CRS [14], [15]. These studies, however, did not measure the volumes of the other paranasal sinuses or did not find differences outside of the maxillary sinus.

This study aimed to compares paranasal sinus volumes of CRS patients to unaffected controls within a Saudi Arabia population using CT.

2. Materials and Methods

This prospective correlational descriptive clinical study was done in Buraidah Central Hospital. Data was collected in the period from (1.8.2017) to (1.1.2020). 151 (73 males, 78 females, aged 1 – 83 years). The sample consisted of 50 normal controls and 101 patients with chronic sinusitis. They were divided into two age groups: > 20 years (n=43) and < 20 years (n=108) [16].

Impact Factor (2018): 0.28 | SJIF (2019): 7.583
All patients were attending Radiology Department Buraidah Central Hospital, KSA. All the patients underwent a complete medical history, head, and neck physical examination. The radiology consultant evaluated all CT scans, and patients were classified following evaluation by CT scan of the paranasal sinuses into two groups. Control Group (n=50): patients suffered from headache, facial pain, and epistaxis, but CT scans of their nasal cavity and paranasal sinus were within normal limits without inflammatory change. Chronic sinusitis Group (n=101): a patient with chronic sinusitis, CT scans who showed inflammatory changes in paranasal sinuses.

All patients were examined on a multislice CT scanner (Toshiba Aquilion 64 CT scanner) according to the following parameters: slice thickness between 0.625 to 1.25mm, 120 kV, 230 - 280 mA, Collimator width 3 - 5 cm, Scan type-Helical full 1.0 sec, FOV: 25.0, Bone window (center 200 HU, width 1500 HU).

The DICOM images of the patients were then transferred and viewed on a personal computer (Lenovo, 64bit, Intel core i3, 4GB RAM). The images of each patient were of slice thicknesses between 0.625 to 1.25mm in the axial plane and were imported to SLICER 3D (www.slicer.org). SLICER 3D also allowed for viewing of the DICOM images in the three different planes viz. axial, sagittal, and coronal. The axial view was selected as the most convenient and most accessible method to trace axial contours of the sinuses for further analysis. Once each sinus was manually segmentally traced (per slice) from the floor to roof, the 3D models of each paranasal air sinus were reconstructed. SLICER 3D then calculated the bilateral volumes (right and left sides) of each PAS from these 3D models. The volume of the PAS was determined and measured in cm³ according to the SLICER 3D program.

3. Results and Discussion

Figure 1 shows the commonly involved gender with sinuses pathologies. It shows that the commonly involved gender with sinuses pathologies was the female, with 53.5% relative to male (46.5%), has noticed the same results.

All patients were reconstructed. The volume of the PAS was determined and measured in cm³ according to the SLICER 3D program.

Figure 2 shows the distribution of chronic sinusitis based on two age groups. In which it reveals that chronic sinusitis infected older ages (>20 years old) more than a younger one (<20 years old). The high incidence among the adult age group could be ascribed to more exposure to the environment, recurrent upper respiratory tract infections. The same result has been obtained by[19] Ologe and Olutunji said that these findings corroborate the findings by earlier workers and ascribe the less common incidence in children to wide ostia and some of their sinuses are not fully developed. These factors could reduce the chances of sinus obstruction that could lead to sinusitis. Chan et al., [20], in a histopathologic study of children with chronic rhinosinusitis (CRS) compared to the sinus mucosa in pediatric and adult CRS, concluded that sinus mucosa of young children with CRS has less eosinophilic inflammation, basement membrane thickening, and mucus gland hyperplasia characteristic of adult CRS.

Figure 3 (a-b) shows the involved paranasal with chronic sinusitis among age groups. All age groups reveal that the commonly involved sinuses were the maxillary sinuses, followed by ethmoid sinuses. For maxillary sinuses, this result could be a scribe to the anatomical location of the frontal, ethmoidal, and the sphenoidal sinuses are witch anatomically located above the nasal cavities. Therefore, their drainage into the nasal cavity is assisted by gravity, especially when their openings are not obstructed by disease so that changes or alterations in the aforementioned paranasal sinuses may initially be subtle and not radiologically evident until it becomes extensive with

![Figure 1: shows the commonly involved gender with sinuses pathologies.](image1)

![Figure 2: Shows the distribution of chronic sinusitis based on age groups](image2)

![Figure 3: Shows the involved paranasal with chronic sinusitis among age groups.](image3)
blockage of sinus openings. On the other hand, poor anatomical position drainage predisposes the maxillary sinus to stagnation of secretions and infection more than any other paranasal sinus [21]. Other investigators in Nigeria have reported 47.5%-80.4% maxillary sinus involvement [22]. They all agreed that maxillary sinusitis is much commoner than sinusitis of the other paranasal sinuses. On the other hand, several studies found that; ethmoid sinuses were the commonly involved sinuses because of the obstruction of the osteomeatal complex, which is located within the ethmoidal sinuses and this obstruction due to mucosal inflammation [23-24].

Figure 3 (A): Shows the involved paranasal with chronic sinusitis related to age and gender

Figure 3 (B): Shows the involved paranasal with chronic sinusitis related to age and gender

Figure 4.4 (C): shows the comparison between control group and chronic sinusitis group related to age and gender

Figure 4.4 (D): shows the comparison between control group and chronic sinusitis group related to age and gender

Figure 4.4 (E): shows the comparison between control group and chronic sinusitis group related to age and gender

Figure 4.4 (F) shows the comparison between the control group and chronic sinusitis group related to age and gender; It reveals that; the mean bilateral maxillary and ethmoid sinus volumes in the chronic sinusitis patients were smaller than that in the normal or control group, also reveals that the mean bilateral frontal and sphenoid sinus volumes in the chronic sinusitis patients were similar to the normal or control group, this result could be ascribe to more inflammatory changes in maxillary and ethmoid sinuses (more involvement to chronic sinusitis, more than 50%) and little or less inflammatory changes in the frontal and sphenoid sinuses (little involvement to chronic sinusitis, less than 50%) figure 3(a-b). Similar results have been noticed by Kim et al. [15] in which they found that; the mean volume of the maxillary sinuses was 22.5 ± 4.4 cm³ in the normal group and 20.0 ± 4.1 cm³ in the CRS group in longstanding pediatric chronic rhinosinusitis. Bilal et al., [25] found that the left-side maxillary sinus, sphenoid sinus, and frontal sinus pneumatization in the patients with nasal polyposis were smaller than those of the control group were, and he scribed that to genetic pneumatization and environmental factors. On the other hand, Ikeda [26] scribed the reduction in volume to the narrowing of the ethmoid infundibulum and middle meatus by inflammation of the osteomeatal complex and by various bony anatomic variations in the nasal cavity, leading to impaired pneumatization of the maxillary sinus.
4. Conclusion

CT Volumetric analysis of paranasal sinuses between normal and pathological condition provide us with real action of pathological changes. Chronic sinusitis disease affects the growth of sinus volumes at different ages. Inflammatory changes decrease the sinuses volume rely on the widespread of the disease, so maxillary and ethmoid sinuses were reduced, therefore. More research and studies are needed to determine the percentage of the sinus opacification that lead to sinus volume decreasing.

References


Figure 4.4 (F): shows the comparison between control group and chronic sinusitis group related to age and gender.


Author Profile

Abbas Omer Hussein Ahmed (Sudan) awarded the B.Sc. Degree in radiologic sciences from Sudan University of Science and Technology in 2003 and awarded a Master degree in diagnostic radiology, in National Ribat university- 2014, Sudan. He has been working at Al-Ghad International Health Sciences Colleges (Saudi Arabia) department of radiology.

Mohammed Ahmed A. Omer: received the B. Sc.-1. in Radiotherapy and Nuclear Medicine, B. Sc.-2 in Medical Instrumentation Technology and M.Sc. degrees in Medical Physics from Sudan University of Science and Technology in 1995, 1998, and 2001, respectively. He has been working as a medical and radiation technologist at Radiation and Isotopes Center of Khartoum and a lecturer at the College of Medical Radiologic Science, Sudan University of Science and Technology. He received a Ph. D. degree from University Putra Malaysia - 2007 in Medical physics-Applied Radiation. Now he is working as a lecturer (Associate Prof.) at Qassim University-Buraidah-KSA.

Wafaa Abbas Elsyed Abdallah (Sudan) awarded the B.Sc. Degree in radiologic sciences from Sudan University of Science and Technology in 2011 and she has been working at Al-Ghad International Health Sciences Colleges- Saudi Arabia) department of radiology.