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Abstract: Given a set of observations, the knowledge of the underlying probability density function that generates the sample is often 

of interest. Kernel Density Estimation is a nonparametric method used to guess the underlying density function using the sample 

observations. Although arguably the most popular method of density estimation, KDE is not free from drawbacks. This method of 

estimation varies greatly with the choice of the smoothing parameter used to estimate the density. This paper gives an overview of the 

KDE and discusses some statistical properties of the  ideal estimator used to guess the unknown density. An outline of some existing 

methods of choosing a smoothing parameter are discussed. Here we only consider estimation under the univariate setup. The idea of 

KDE can easily be generalized to a multivariate dataset. 
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1. Introduction
1,2,3,4,5,16,17,18 

 

Given a set of observations, the underlying density function 

believed to produce the dataset, can be estimated using two 

approaches. In the parametric approach it is assumed that the 

sample is drawn from a particular density. The parameters 

are then estimated on the basis of the sample. Following 

this, the estimates are plugged in as the values of unknown 

parameters of the assumed density. However, in real life 

situations the sample may not always belong to a well-

defined family of distributions.  

 

The nonparametric approach paves the way to make 

inferences regarding the data without making  any such rigid 

assumptions about the underlying density function.  

 

Among all nonparametric methods the Kernel Density 

Estimation is the most widely used method of estimation. 

 

Suppose we are given a sample of iid random variables  X1, 

X2,…..,Xn  drawn from the unknown probability density f.  

Using the Kernel Density Estimator (KDE) f
^

  we 

approximate  f. 

 

The kernel density estimator  at point x  is denoted by 

f
^

 x, h =
1

nh
 K

n

j=1

 
x − Xj

h
  

 
Where K is the kernel and h>0 is called the bandwidth or 

smoothing parameter  

 

K is generally a smooth, symmetric function which satisfies 

∫ k x ⅆx = 1. 

 

Intuitively the kernel estimator can be considered to be a 

sum of bumps (smooth functions) at the observations. K and 

h smooth each data point Xi   into small density bumps .The 

shape of the bumps depends on K while their width depends 

on h. Therefore, h controls the amount of smoothing in the 

estimate of the density. The individual density bumps are 

then added up to obtain the final density estimate f
^

. 

 

2. Effect of Kernel and Bandwidth on 

Estimation
1,2 

 

Usually a non negative kernel is chosen for estimation which 

makes both the kernel and the corresponding estimator  𝑓
^

  
density functions. However in some situations a kernel may 

also be chosen which it takes both negative and positive 

values. 

 

Some common choices of a kernel are given in Table 1 

 

Table 1: Some common choices of the kernel 
 Kernel K(t) 

Uniform 
1

2
I  t ≦ 1  

Triangle  1 −  t  I  t ≤ 1  

Epanechnikov 
3

4
 1 − t2 I  t ≤ 1  

Biweight 
15

16
 1 − t2 2I  t ≤ 1  

Gaussian 
1

 2π
ⅇ−

1
2

t2

 

 

Although the Gaussian kernel is the popular choice, the 

Epanechikov kernel is the most efficient kernel
1
.However 

under most common choices of the kernel we get a fairly 

good approximation of the true density. 

 

The quality of the estimator  depends more on the choice of 

the bandwidth than the choice of the kernel . If a very small 

value of the bandwidth is taken then the features of the data 

become heightened while a very large value of h results in 

an overly smooth estimate which obscures prominent 

features of the dataset as is illustrated by the following 

example. 
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3. A Practical Example 
 

We consider the inbuilt dataset faithful from R for the 

following example. We plot the data faithful$ eruptions and 

superimpose a density curve. The data plot is shown in 

Figure1. 

 
Figure 1: Histogram and Density Plot of the Data set. 

 

From the histogram above it is observed that the dataset is 

bimodal with maximum density around the values 1.75 and 

4.5. We assume each observation is drawn from a Normal 

Distribution centered around the observation. This is 

equivalent to assuming a Gaussian Kernel for the data set 

with mean xi  for the ith observation and the common 

standard deviation h for all observations. The sum of all 

Kernels gives the final estimate of the density. This is 

demonstrated in the following figures. For convenience the 

kernel density for 6 out of all 272 observations are plotted. 

The black curves depict the Gaussian kernel centered at the 

6 observations. The combination of all 272 of such curves 

gives the estimate of the density shown in red. 

 
Figure 2: Density Estimation using a Gaussian Kernel with 

h=0.3 

 
Figure 3: Density Estimation using a Gaussian Kernel with 

h=1 

 

 
Figure 4: Density Estimation using a Gaussian Kernel with 

h=0.1 

 

From Figures 2,3,4 it is observed the choice  h=0.3 gives a 

density estimate which is closest to the true underlying 

density function(Figure-1). A bandwidth value taken too 

close to zero such as h=0.1 results in a graph with more 

fluctuations than is present in the actual data while a large 

bandwidth value h=1 causes a smoothed out graph which 

obscures the distinct bimodal feature of the unknown density 

function. 

 

4. Criteria for the Optimal Choice of the 

Bandwidth
 1,2,3,4,5,6,7,8,9 

The most common measure of efficiency of the estimate f
^

 is 

given by the mean integrated square error MISE  

It is denoted by 

                                                       MISE  f
^

 = E∫ ({f
^

 x −

f(x)}2)ⅆx 

The MISE can be seen as the mean squared error MSE used 

for  estimating more than one single value.Not unlike the 

MSE, MISE too  can be expressed in terms of the bias and 

the variance of   f
^

 as below
1
: 
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MISE  f
^

 = E∫ {f
^

 x − f(x)}2 ⅆx = ∫MSEx ⅆx

= ∫ {E(f
       ^

 x ) − f(x)}2 ⅆx

+ ∫ E{f
       ^

 x − E(f
       ^

(x))}2  ⅆx

= ∫ bⅈasx
2 x ⅆx + ∫ varf

^

 x   
 

The first term of the RHS is called the integrated square bias 

and the second term is called integrated variance. 

Substituting the expression of f
^

 in terms of the kernel we get  

                   

 Ef
     ^

 x = E
1

nh
 Kn

i=1  
x−Xi

h
 =  ∫

1

h
K 

x−y

h
 f(y) ⅆy 

And             nvarf
^

(x) = ∫
1

h2 K 
x−y

h
 

2

f y ⅆy −

 
1

h
∫ K  

x−y

h
 f y dy 

2

 

 From the above equations we can infer that both the  

expectation and variance of the estimator depend on  h and 

k. Moreover, the expectation of  f
^

 as seen above is actually  

a convolution of the kernel K and  the unknown density f,h 

playing the role of the scaling parameter.Hence  f
^

 estimates 

a true density which has been smoothed out by the kernel.  

The exact value of the expectation and variance can be 

complicated and that’s why a common practice is to resort to 

asymptotic approximations of the MISE. 

With  Ef
     ^

 x  as given above, the biasx is given by: 

bⅈasx = ∫
1

h
f y K  

x − y

n
 ⅆy − f x  

We make the change of variable  y = x− hs. Assuming k is 

symmetric about zero and ∫ s2K s ⅆ s = uk, as  k is a 

density which integrates to 1,we  get  

 

Bⅈasx = ∫ f x − hs k s ⅆs − f x  
=∫ {f x − hs − f x }k s ⅆs 

= −hf
′ x ∫ sK s ⅆ s +

1

2
h

2
f
′′ x ∫ s2K s ⅆ s + ⋯ 

=
1

2
h

2
f
′′ x uk + o(h

2)  

As seen above as  h → 0, the bias decreases at a rate o(h
2) .  

 

The above equation expresses the bias of the KDE as a 

function of the curvature of f,  as denoted by f
′′ x . 

 

Therefore we conclude that the bias will be very large if the 

curve changes frequently. This is a reasonable interpretation   

since the KDE, as mentioned above, provides a smoothed 

out version of the unknown density. Hence the bias in the 

estimate will increase with the rapidity of changes of the 

curve. 

 

Integrating over the range of x, 

∫ bⅈasx
2 x ⅆx ≈

1

4
h

4
uk

2∫ f
′′ x dx 

 

 Similarly transforming  y to x− hs 
 

                                    varf
^

 x ≈
1

nh
 f x − hsf

′ x +

…K2s+O1n≈1nhfx∫K2sⅆs 
1-2

 

Integrating over the range of x, as ∫ f x ⅆx = 1 

∫ varf
^

 x ≈
1

nh
∫K2 s ⅆs 

The optimal choice of h is one which reduces the Mean 

Integrated Square Error. From the approximations above, we 

conclude that a small value of h reduces the bias while a 

large value of h reduces the variance. As the variance 

increases, so does the error in estimation and we get 

spurious and highly fluctuating estimates of the density. On 

the other hand as bias increases we get an estimate which 

may smooth out important features of the density .To obtain 

the minimum MISE a compromise is needed in between 

lower bias and lower variance.  

 

Using the above equations, the MISE is can be simplified as, 

                                     MISE  f
^

 =
1

nh
∫K2 s ⅆs +

1

4
h

4
uk

2∫ f
′′ x dx + O  

1

n
 +  o(h

4) 

 

The dominating part of the MISE is given by 
1

nh
∫K2 s ⅆs +

1

4
h

4
uk

2∫ f
′′ x dx which is called the Asymptotic Mean 

Squared Error or AMISE. 

AMISE  f
^

 =
1

nh
∫K2 s ⅆs +

1

4
h

4
uk

2∫ f
′′ x dx 

 

The optimum value of h, h0 is obtained by differentiating 

AMISE  f
^

  and is obtained as  

h0 = uk

−2∕5
n−1∕5 ∫K2 s ⅆs 

1∕5
  ∫  f

′′ x  
2

ⅆx 

−1
5 

 

As seen above, h itself is inversely proportional to a positive 

power of   f
′′ x  

2

,which denotes the change of slope of  

the unknown density. Hence if the true density is expected to 

vary rapidly a small value of h should be chosen for 

estimation.
 1-2

 

 

5. Selection of Optimal Bandwidth
 9,10,11,12,13,14,15 

 

An appropriate choice of  h  is imperative for a good 

estimation of the unknown density. As the AMISE depends 

directly on the unknown density it cannot be readily used in 

practice to obtain the optimal bandwidth.  

One way out would be to plug in an estimate of    f
′′ x  

2

 

from some standard distribution which is discussed below. 

This method works well for unimodal densities but tends to 

oversmooth the data in multimodal cases. Therefore, it 

becomes crucial to look for other methods of obtaining an 

optimum value. Overviews of a few common methods are 

given below: 

 

6. Reference to a Standard Distribution 
 

A simple way of obtaining an optimal bandwidth would be 

to estimate   f
′′ x  

2

using some standard family of 

distributions. The most common approach is to assume f 

follows a N(μ,σ
2
) distribution. Using this estimate of f and 

taking a Gaussian kernel we get 

h0= 1.06n
−1/5

 σ. 
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Here sigma is estimated by sample standard deviation 

usually. This substitution of  σ works  well for  univariate 

distributions. However, it provides smoothed out estimates 

in case of bimodal distributions. A greater drawback is that 

this procedure gives inaccurate estimates if the true density 

is long tailed and skewed. An alternative which is more 

robust to outliers is the Interquartile Range R. Under the 

normality assumption, using R the optimum value of h is 

obtained as  

h0 = 0.79Rn−1/5 

Being robust R
^

 may be considered ideal for the univariate 

case but it fails to estimate multimodal distributions as 

accurately as σ
^
. 

A compromise between both the above procedures in to take 

h0 = 1.06min⁡ σ
^

, R
^

1.34
  n−

1
5  as an estimate of optimal h. 

This works fairly well in case of both multimodal 

distributions and skewed  distributions. 

 
Least Squares Cross Validation 

Here, we minimize the Integrated Square Error(ISE)  

instead of the AMISE .We first use the sample to calculate 

KDE and then we use it again to  validate how well the 

obtained  KDE estimates f. 

 

The Integrated Square Error (ISE) is given by 

ISE = ∫ {f
^

 x − f(x)}2ⅆx=∫ f
2 x ⅆx − 2∫ f

^

 x f  x ⅆx +

∫ f
^2

 x ⅆx 

 

Since the first term of the RHS is independent of h 

minimizing ISE would require the minimization of the last 

two terms. 

D = ∫ f
^2

 x ⅆx− 2∫ f
^

 x f  x ⅆx 

 

The basic idea behind cross validation is to obtain a value of  

D on the basis of  the sample. The optimal h is the value for 

which this estimate  D(h)
^

 is minimized. ∫ f
^

 x ⅆx is 

estimated from the estimate of f
^

. 

 

We define f
^

−j as the estimate of density obtained from all 

density points except Xj . 

 

In mathematical terms,  

f
^

−j x =
1

 n− 1 h y≠j

 K
 
x− xy

h
  

We minimize the least square cross validation function  

M(h) = ∫ f
^2

−
2

n
 f

^

−j xj 

j

 

to obtain an optimal  value of the bandwidth. 

 

It is important to note  E  M h  + ∫ f
2 ⅆx  for all h equals 

the MISE. Thus minimizing E M h   brings us back to the 

obtaining an unbiased estimate of the MISE. An advantage 

of this method is that it is asymptotically optimal. The 

calculation of M(h) is not very simple and often calls for 

numerical methods . 

 

An offshoot of the least squares cross validation method is 

the likelihood cross validation method which minimizes the 

function C h =
1

n
 log⁡f

^

−j

n

j=1

 Xj  to obtain optimal h. 

 

The Test Graph Method 

 

Assuming kernel k is symmetric and twice differentiable 

under certain regularity conditions the best possible h is the 

value of h which results in the most rapid convergence of 

sup⁡ f
^

− f  to zero.This ensures that the estimate of the 

density uniformly converges to true density implying the 

estimates of the f
′′ x   would be close to the true value. 

For the optimum h we would get  

sup⁡ f
^′′

−Ef
^′′

 

sup⁡ Ef
^′′

 

→ P   where P is a function of the kernel only. 

 

The numerator depends on the random error (fluctuations) in 

estimation of Ef
^′′

while the denominator depends on the trend 

of f
^′′

.Thus for good estimation it is expected that the random 

fluctuation will be much less than the trend. Therefore to 

obtain the optimal value of h test graphs of the function f
^′′

 

for various values of h are drawn. The optimal h should be 

the one which represents a graph that despite having random 

fluctuation has a clear trend. 

 

Apart from the above mentioned three, there are a variety of 

methods of bandwidth selection but no method is universally 

accepted. 

 

7. Conclusion
1,2,3,4,5,6,7,8 

 

Despite the wide applicability of Kernel Density Estimation 

there are many issues regarding its practical performance. 

Bandwidth selection forms the chief issue in the framework 

of Kernel Density Estimation. While the optimal bandwidth 

provides estimates which are very close to the true density, a 

bandwidth selected without proper consideration may 

provide crude estimates. The selection of bandwidth 

depends on the purpose for which estimation is needed, 

whether a general idea of the true density is required, in 

which case a reference to standard method would be 

sufficient; or whether the data is to be studied to make 

inferences regarding the population, for which more 

complicated methods such as cross validation is used. Each 

method has its own set of advantages and for a large sample 

possesses asymptotic properties which provide estimates 

close enough to the true density in the long run. 
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