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Abstract: A new four-parameter model called the Exponentiated Marshall-Olkin Exponential distribution is examined. Several of its
mathematical properties including ordinary moments, quantile, generating functions and order statistics are investigated. The
maximum likelihood method is used to estimate the model parameters. An application with the remission times of a random sample of
bladder cancer patients is given to illustrate the proposed model of lifetime distribution.
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1. Introduction

Many different ways of generating new distributions from
classic ones were developed in the last few years. Marshall
and Olkin (1997) introduced a method of adding a new
parameter to an existing distribution. The resulting new
distribution, known as the Marshall-Olkin extended
distribution, includes the original distribution as a special
case and gives more flexibility to model various types of
data. Eugene et al. (2002) specified a class of beta-generated
distribution. A family of distributions that arises naturally
from the distribution of the order statistics was studied via
Jones (2004),and he introduced general properties of the
proposed class of distributions. Zografos and Balakrishnan
(2009) projected the gamma-generated family of
distributions. Subsequently, Cordeiro and de Castro (2011)
defined the Kumaraswamy family. Latterly, Alzaatreh et al.
(2013) proposed a new technique to derive wider families
via using any probability density function (pdf) as a
generator.

In this article, we define and study a new four-parameter
model called the Exponentiated Marshall-Olkin Exponential
(EMOEX) distribution and provide some of its properties.

f (x)=ai(l-p)g(x;&)[1-G (x

where g(x; & ) is the baseline pdf. This density function will
be most tractable when the functions G(x) and g(x) have
simple analytic expressions.

The contents of this paper are organized as follows. In
Section 2, we define the EMOEXx distribution. Shape and
some plots for its pdf and hazard rate function (hrf) are
displayed in Section 3. A comprehensive account of
mathematical properties of the new distribution, include
linear representation, the quantile function, the moments, the
moment generating function and the order statistics are
discussed and provided in Section 4.InSection 5, we
demonstrate the maximum likelihood estimates (MLEs) of
the unknown parameters and the asymptotic confidence
intervals of the unknown parameters. An application of the
EMOEx model is presented in Section 6. Finally, Section 7
concludes this paper.

We prove, via an application, that the EMOEX distribution
can give better fits than many other distributions.

The new model is generated by applying the exponentiated
Marshal-Olkin-G (EMO-G) family (Dias et al., 2016) to the
Exponential distribution. Diaset al. (2016) studied general
mathematical properties of a new class of continuous
distributions with three extra shape parameters called the
exponentiated Marshal-Olkin family of distributions. This
generator has cumulative distribution function (cdf) defined

by:
F ()| oG 9]
2
1-p[1-G (x;¢)]
where G(x; & ) is the baseline cdf depending on a parameter

vector § and a > 0, L >0 and p < 1 are three additional shape
parameters. For each baseline G, the exponentiated

1)

Marshall-Olkin-G  (“EMO-G” for short) distribution is
defined by the cdf (1).

The density function corresponding to (1) is given by:

o 1[G (x ;e‘)]l}a_1
[1-p[1-G (x ;g)]ﬂ}wl

2. The EMOEX Distribution

£)]

)

In this paper, we introduce a special case of the EMO-G
family which is the EMOEx model. This case is defined by
taking G(x) and g(x) to be the cdf and pdf of the Exponential
distribution.

The cdf of the Exponential distribution is given by:

G (x,0)=1-¢>’ X >0 ©)
The corresponding pdf is given by
g(x,0)=0e"’ X >0 4

The new model includes four parameters, referred to as the
(EMOEX) distribution, with hope that it will use with many
applications in different disciplines, as survival analysis,
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reliability, biology and others. The fourth parameter indexed 2

to this distribution makes it more flexible to identify 1—[1—(1—6’9X )J

different types of real data than other models. F (X = = 6
The new distribution has the cumulative distribution 1-p [1_(]__@*6’X )J

function which is defined by:

and the corresponding probability density function (pdf) is
given by:

N i
{1— p[1-(1-e )T}

which it could be simplified into where o> 0, A> Oand p € (—oo, 1)are shape parameters and
—oix 1%L 0 > 0 is a scale parameter. Hence, we denote by X~EMOEX
{1-e*} 5 (6.a2, p)arandom variable having pdf (6).
{1_ pe —0x }ml ! (6) The corresponding hazard rate function is:

f(x)=ai(l-p)(6e ™ )[1-(1-e )]

f(x)=a0i(1-p)e "™

A \a-0x [1_ a-02x 7%t
‘) a@ﬂ(lap)e 1 e ] | o
[1_ P (efmx )J _I:l_efezx J [1_ p(ef.%x ):|
3. Shape the distribution. Figure 1 shows various shapes of the

EMOEX pdf for different choices of parameters.

In the pdf of new distribution, the parameters A a and p
control the shape distribution, whereasé controls the scale of

LS
f 1Y Fol y-T 2-1205-12
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Figure 1: Plots of the EMOEX pdf for varying parameter values
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Figure 2: Plots of the EMOEX h(x) for varying parameter values

Figure 2. shows various shapes of the EMOEx h(x) for  The critical points of the EMOEXx density function are the
different choices of parameters. roots of the equation:
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o] feote [ et el

dx (e | -ep (e |

when we solve last equation, there is two solutions which is:

There may be more than one root to (8). LetA(x) =

l(x):dzln[f (x)]

dx 2

d?log f (x)]
dx?2 )

_07 (8)

-Ua

n 2% —a+ pai\/4p +(1—p)2052
p

X =

0

we have:

(&) p[-1+(e) p((e7) ~a) (e} a)or2’

(—1+(e”

l)(—l+(ex'g)l p)Z

)
) (&) (-a+(e) p((e™) ~a)+(e*) a)ois

(_1+(ex9)*)2(_1+(ex9)ﬁ 0)

eﬂ(—(e”)“ poi—(e>) p ((e”’)l —a)&ﬁ, (e’ aH/l)

+

The model calculations based on first and second derivatives
shows the mode of the density at x = x, for the EMOEXx
model has local maximum if A(x) > Ofor all x < x, and
ifA(x) < Ofor allx > x;. It corresponds to a local minimum
if A(x) <0 forall x <xyand A(x) > 0 forall x > x,. It
gives a point of inflexion if either A(x) > 0 for all x # x, or
A(x) < 0 forall x # x .

The critical points of the (hrf) of X are obtained from the
equation:
dlIn|h(x
LGOI
dx

There may be more than one root to last equation. Let(x) =

2 i
dl"s‘f{‘zﬁ(m.lfx = x,is aroot of this equation then it refers to a

local maximum ift(x) > 0 for all x < x, and if 7(x) <0
for all x> x,. It corresponds to a local minimum if
T(x) <0 forall x <xpand t(x) >0 for all x> x,. It
gives a point of inflexion if either (x) > 0 for all x # x, or
T(x) < 0 forall x # x, .

4. Mathematical Properties

In this section, we derive some mathematical properties of
the new distribution, include linear representation, the
quantile function, the moments, and order statistics.

(—1+(e‘”)l)(—l+(e‘xg)1 p)

4.1Linear Representation

Here, we originate a suitable linear mixture representation
for the cdf and pdf of the EMOEX distribution. The cdf of
the EMOEX in (5) can be conveyed as

F(x)= {1—[1—(1—e-f’* )T} {1— p[1-(1-e" )T}

Applying the binomial expansion defined by

a2y 3]z ©
i=0
Now, the cdf of the EMOEX reduces to

Fx)=3T/ P| _?Il—: 1] -] | a0
= | i | |

Using the generalized binomial expansion defined by

a2y -3 (7).

j=0
[ Py d Ry a o W
- 1-(1- = (1) 1-(1-¢ _
Then, equation (10) reduces to

(11)

Therefore, we can write

= o (afar | i)
Fixp Y 7P || [1H1-e*)] 7 w2
i =l wEAN S

Using (11), we have
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AT At Y
i —j- -"'55 Ve Ali +7 )}

Flxk S (1) e Tas)
i A=l 'F _."'t_..f _.-"-._ "t _.ll

Then, the cdf of the EMOEX reduces to

x)=2b,G, (x.0)", (1)
k=0
where

b, iéﬁ‘”iﬂ*k o [—iaJ[ﬂ(i(i; j )j

and G, (x,0)* denotes the exponentiated-G (“exp-G™) cdf
with power parameter k.

The density function of X can be expressed as an infinite
linear mixture of exp-G density functions

x)::z;:obkﬂ(k +1)g (x,0)G,

where (fork > 0) (k+ 1)g(x,8)G,(x,0)% denotes the
density function of the random variable Y.~ exp-G(k + 1).
Equation (15) discloses that the EMOEX density function is
a linear mixture of exp-G density functions. Thus, some of
its mathematical properties can be derived directly from
those properties of the exp-G distribution. Some structural
properties of the exp-G distributions are definite by
Mudholkar and Hutson (1996), Gupta and Kundu (2001) and
Nadarajah and Kotz (2006), among others.

(x,0), (@5

4.2 Quantile Function

To find the quantile function, we need to solve the
equationF (u) = 0, 0 < u <1. The quantile function of the
EMOEX can be written as in the following theorem.

Theorem 1. The quantile function of the EMOEX is given
by

Qu)=-—n| Y|

00| 1 pus

where0 > 0,A>0,a>0

O<u<l (@16

Proof. The CDF given in eq (5) can be written as

1 1
1-ue =e*) {1—u0’ p}

Then
1
1-uc-
Z (u) T
l1-uep
Therefore, we can write eq. (16) as
1
—6/Q (u)=In l_ﬂ
1-u=p
Hence,
1
1 1-u-
u)=——In| ————
Q(u) A x
1-pu-

Corollary 1. The three quartiles of the EMOEX are given by

at
le—iln 4 ;Medlan

1
4

Q,=———1In

A 1
3 \e

1—-pl 2

p(4j

Proof. The proof comes directly by putting u = 0.25, 0.5,
and 0.75 in the quantile function derived in Theorem 1.

4.3 Order Statistics

Let X; ..., X,, be a random sample of size nfrom the EMOEX
distribution and Xy ..., X, be the consistent order
statistics. Then, the pdf of the ith order statistic Xi:n, say
fi:(x), is given by

1-e 7OV T f(x) & .fn-1 4
Fow) = —o =u fo=— "\ N(q) F(x HH, 18
o) [1—pe re) B(i,n—i+1)jz_:;( )[j j ()™ a9
1—e W) 1 Using equations (5) and (6), we can write
=u“ Pt S e . -l
1-pe 0 £ (x)F(x) " =aa(t-p) (6™ )[1-{1-e ]
M valieii-l g =
Let 1= T W T fee= T
Z (u)=-62Q (u), an <)) jep[ e )
Then eq.(16) becomes
Applying the expansions (9) and (11), we have
i —a(i +j)-
a)eli+i)-l X Ar
ﬁ:-p[l—(l—e-”)] } =j§ [1-(1-e )]
= r
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and
it a(i+j)—1 .
{1—[1—(1—e-‘9x )] } mZ;) [1—(1—e-9x )]

after some simplifications, we have

—a(i+)-1)(a(i+])-1)(A(r+m+k +1)-1

f (x)F(x)‘”*l:ai(l-p)(ee*ﬁ*) Z (-1 pr [1eo ]k
r,m,k=0 r m k

when we insert the last equation in equation (18), we Where  g(x,0)denotes pdf of the Exponential
achieve distribution, G, (x, 8)* denotes the exponentiated-G (“exp-

® G”) cdf with power parameter k, and

k
fin(X)=>4 9(x,0)G, (x,0), (19)
k=0

ZZ( 1)r+m+kp (1- p) —iV—a(i+j)-1\(a(i+j)-1)A(r+m+k +1)-1

Ryl Yoo B(l,n—|+1)

r m k

4.4Moments and the Moment Generating Function

Theorem 2. The rth moments E(X") of a EMOEX random variable X, is given by

) B A e e

j=0 k=0 A Hr(r+1+j)Ir+1

Proof

r):TX "f (x)dx
0

TX ro 0 @ ~0Ax ) (1 p )( @ ~0Ax )*”‘*1 Odcrdx
’ (21)

—a-1

:9&a(l—p).|-X ‘e (1—e ) T (1—e ¥ p) T dx,
0
Using the following binomial series expansion of(1 — e o (o
e—84x)a—1given by (1—e‘9“p) 1:2( 0:( 1)(e“%X )k (—1)k(p)k

Loyl a1 i(q—aax )] k=0
(1—e ) => j (-1) (e ) Eq. (21) takes the following form

j=0
using the following binomial series expansion of(1 —
e~ py=*~lgiven by

E (X r):ous?/1(1—p)Ix fe-g“i(a__lj( e ) (-1)

j=0 J

>3 RN C DR

k =0

=a9/1(1—p)§(a J -1)’ Z( j -1)" (p)’
fxreme e
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k=0

—afA(1- p)i[“;lj(—l)" i(_i_l)(—nk (p)" ,Ix 1) gy

i=0
using integrate by parts we get

E(x")=(- p)Z[aj 1)(—1)" g(_i_l)pk(—l)k

=0 0

al(r+1)
20" (r+1+j)"

Theorem 3. Let X have an EMOEX distribution. Then the moment generating function of X, M, (t), is:

.= {ae-m3( ' S

k=0

j=0
where10is the Wright-generalised hypergeometric function.

Proof

1

Glard
i (23)

using the binomial expansion equation (23) reduces to

|—1:'" i

R,

) - . f .
Mtk fee ™ (1-e™ | (1-p)(1-e*p)

M, (¢ k:ae:—?zl_l—p:lz |—1k (o)
.-:-':'

— 1—: x
><[ K-{k+ e
- - - -:I -
using Taylor series expansions the above integral reduces to

Finally, we have

‘OI‘( ‘1j(_1)k (p) }1% {(1’_1)‘ / 9} @2

(a—1" = [ —g—1) Bk
M, (t)=a8i(1-p) |—1k =) (e
Z‘ é )
* r_ _[x':”eqi TR (24)
EL BT m! o

The integral form of M, (t)in equation (24) can then be
obtained by using the Wright-generalized hypergeometric
function as

(B, )
1Yo i X :z

(6,D,).....(4,.D,)

Mx(t)=0€(1—p)j2[a J -1)’ Z( J “1)* (p)" Z(tj r(m+1), (25)

Then equation (25) yields the following representation of the Wright-generalised hypergeometric function

. 0= {at-p 3 55 o ] s

j=0 k=0

5. Stress-strength Analysis

There are applications (every physical component possess
characteristic strength) which survive due to their strength.
These applications receive an assured level of stress and
sustain. But if a higher level of stress is applied then their
strength is unable to sustain and they collapse. Suppose Y
represents the ‘stress’ which is applied to a certain appliance

f(x)

and

=o, 4, (1-p,) (6 )I1-(1-e ¥ ]

and X represents the ‘strength’ to sustain the stress, then the
stress-strength reliability is denoted by R= P(Y<X), if XY
are assumed to be random.

Suppose X and Y are random variables independently
distributed as

X~EM0Ex(91,a1,ll,p1) and
YNEMOEx(Gz, az,ﬂ.z, pz)W'th pdf'S

Al {1_[1—(1—991x ]A}al—l
{1— pl[l—(l_e,glx ]%}aﬁl )
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f(y)=a,4(1-p,)(0e ™ )l1-(1-e

Therefore,
R :Tff (x).f (y)dxdy, (26)
using the binomic;loseries, we obtain
]f (y)dy =L, .]'e‘%y("”l”z’dy, (27)
0

where

et on) 5| 5

Jo=0

now, from (13) we have

oy Tz-l {1—[1—(1_e_92y :|,12 }azl

{1— p,[1- (1—8“92V ]42 }am

[ L _
f d — 2 0320y (ko +1+],)
-[ (v )dy —0,4, (k, +1+ jz)[ ]0

0

L, —&Ax (k. +l+j00
=—5‘:fi:|i-‘:5:‘—1—j:]|ig T _1] (28

when we insert the last equation in equation (12), we
achieve

il s

Then, by using the binomial series, we obtain

I‘1|‘2 |:Ie =0, /0X (Ky+1+ 3 )= 04X (Ko +1+ ) —e 64X (k1+1+j1)dx :|

- 2/12(k2+1+ Jz) 0
I-1|—2

1

e X[ B4 (K +1+ 1) -0, 25 (K +14+ 5 )|

) _62/12(k2 +1+ j2)|:_‘9121(k1+1+ jl)_

Finally, we have
I‘1|‘2

0,2, (k, +1+j,)

_ 1 e 674X (k1+1+j1):|
- 121(k1 +1+ 11)

(1+],+k;) 604

T A, (K, +1+ jz){_(l+jl+kl)91kl((1+j1+k1)61k1+(1+j2+k2)0212)}’

where

L= 4 (1_ pl) i {al-_

i\
and

L, :05292/12(1_ pz)Z(
j2=0
Thus the reliability measure is determined by only on the
slope parameters (ay,604,41,p1) and (az,0,,1,,p,). This
could be used as a measure of the difference between two
populations as well as the effectiveness of one medicine
over other.

6. Quantile based Shannon entropy

In latest years, there has been a great concentration in the
measurement of uncertainty of probability distributions.
Suppose that X is a nonnegative continuous random variable

e 3

k=0

a,

(29)

RO

G0 e SIS

k,=0

representing the lifetime of a component with cumulative
distribution function (CDF)F(t) = P(X < t)and survival
functionF(t) = P(X >t) =1—F(t). The measure of
uncertainty defined by Shannon (1948) was

F(X)= £ (f - [nf(X)f(X)dX =-E (Inf (X)).(30)

where f(X)is the probability density function of X. Last
equation provides the expected uncertainty contained
inf (X)about the predictability of an outcome of X, which is
identified as Shannon entropy measure.
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Many properties of the entropy function can be used as an
alternative tool in modeling statistical data. Sometimes the
quantile based approach is better in expressions of
tractability. New models and characterizations that are
unresolvable in the distribution function approach can be
resolved with the aid of quantile approach.

According to Sunoj and Sankaran, the Shannon entropy in
(30) can be written in terms of quantile function as

- J:‘(In (q(u))du, (31)

where q(u) = Q(u) and Q(u) represents quantile function
of distribution.

Evidently, by knowing either Q(u)or g(u), the expression
for £(X) is quite simple to compute.

Thus, in order to obtain the Shannon entropy of EMOEX
distribution we can use last equation and the Q(u)that has
givenineq (31) as

|1-pu-

gi)=0in)= - - . —

n

Therefore, we can obtain

:Jl'(ln(q (u))du

[ 1 J :|
i
where

vis Euler’s constant vy, with numerical value ~0.577216.
,Fi[1,a,1+ a,p] is the hypergeometric function.

Y@ (a)is the n™ derivative of the digamma function.

1 ]Fi[l._ nx._l—nx._p]

= 1—‘||'—_—

v (a).62)

7. Estimation

The maximum likelihood method is the most commonly
employed for approaches for parameter estimation in the
literature. The maximum likelihood estimators (MLES) can
be used when constructing confidence intervals for the
model parameters. In large samples, the normal
approximation for these estimators could be easily treated
either analytically or numerically. Therefore, we consider
the estimation of the unknown parameters of this model
from complete samples only by maximum likelihood. In this
section, we find the MLEs of the parameters of the new
model from complete samples.

Let x4, . . ., X, be the observed values from the EMOEX
distribution with parameters p, a, A and 6. Let O =
(p,o,A,8)"be the rx1 parameter vector. The log-
likelihood function for @, say & = 0(@), is given by

(=nin[aif(1-p)]-04 X, +(a-1) ) |n[1-e'“xi]—(wl}iln[l—pe-“*i], (33)

i=l i
The maximized log-likelihood can be solving directly by

using the NLMIXED procedure in SAS.

al al al \r .
_(ap e ae) are given by

o n n (e“’Xi )A In [e“gxi ] n
) z+(a—1) 2" 1_(e—ﬁxi )ﬂ (a+1) .21:
and

%ZE_AZ im_

ry - 1_(e—9x, )]L

For interval estimation of the parameters of the EMOEx

distribution, we necessitate the 4 X 4unit observed
information matrix is
I p.p I p.a I p.A I p.o
| | | |
A a,b
I ) (®) - _ a,p a,o a ,

or n (e_gx‘ )l B
%__ﬁ_(lﬂx)izl:_l— p(e™ )1 B
% . Zlm[l (ex)} zm[l p(ex)}

) o] e

-p (e‘gxi )/I i=1

n (e*f’xi )ﬂ PAX,

3y P

) 1_ p (e—Bxi )
the ingredients of the 4 x 4 information matrix I,(®)are
given by

0% n 1) n (e—xg)u
=— —(a+

apz (1— p)2 “ i=1 (1_ p (e—Gix ))

o n

oa’ o’
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(e )M In [e“’x' T e %™ In [e*”‘ ]2
(1—679’“‘ )2 B 1_g 9%

Zn: _(e*“’Xi )U p2in [e’gxi T B e pln [e“’xi ]2

T (ip(erm)  mR(e™)

820 n n (e—ﬁxi )“ 22x,2 (e—Bxi )i A2x 2

2 I ey e

N —oxi \** 252y 2 —oxi V' 22y 2
(@) _(e ) p)bxI2 _(e ) PAX, |

T oy ey

520 - n B a0
opoa ,Z:;‘ 1-p(e™)’

0%l n n
- e -
6&2 22 ( )g

| (£ ) pmn[e™] (e ) In[e™]
(@+1)2 (1— (e )4)2 p(e )

52/ —(a+1) n | (e™) pax, (e ) ax
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The 4 X 4 unitobserved information matrixI, () = {I,,; }for
n,s = a,A,p, 0 under standard regularity conditions, the
multivariate normal N, (0, I(@)_l) distribution can be used to
construct approximate confidence intervals for the model
parameters. Here, I(@)is the total observed information
matrix evaluated at §. Then, approximate100(1 — ¢)%
confidence intervals for the model parameters can be
determined in the usual way of the first-order asymptotic

8. Simulation Study

Here, a simulation study is completed to consider the
average bias and average mean square error (MSE) of the
simulated estimates. The equation f(x) — u = 0, where u is an
observation from the uniform distribution (0,1), and F(x) is
cumulative distribution function of EMOEX, used to
complete the simulation study by generating random

theory.

Paper ID: SR20614023257

samples following EMOEX. The simulation experiment was
repeated 5000 times each with sample sizes, 25, 50, 100,
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150, 200, 400, 800 for (a,6,4,p) = (0.8, 0.8, 1.5, 0.5) and
(1.5, 0.5, 2, 0.8). The following measures are calculated:

(i) Average bias of&, , Aand pof the parameters a, 6, A, p

are, respectively:
1V 1IN
S e-w, 23" @)
Nzizl ) N i=1( )

T 1V
- - 1), and —Z 5 —
Nzizl( ) N i=1(p P)

The MSEs of @,6, 1 and p of the parametersa, 6, A, p

are, respectively:
1V 1V 2
— a&— a)?, — - 0),
Nzizl( ) Nziﬂ( )

70 (=2 ad 53 6=

—_— — , an —_— —

N Ly CNLi PP

From Table 1, it can be established that the MSE and the

average bias decrease as the sample size increases.

Table 1: Bias and MSE for the parameterse, 8,1, p

0 0=10.8 p=05 L=15 0=0.8
MSE Bias MSE Bias MSE Bias MSE Bias
25 0.03156 0.03806 0.86648 0.02079 0.17144 0.07073 0.04876 0.03772
50 0.01378 0.01848 0.14809 —0.00884 0.08046 0.03636 0.02288 0.01939
100 0.00642 0.00920 0.00970 —0.01044 0.03900 0.01930 0.01109 0.01029
150 0.00433 0.00664 0.00607 —0.00722 0.02623 0.01313 0.00746 0.00700
200 0.00320 0.00539 0.00446 —0.00588 0.01942 0.00828 0.00552 0.00442
400 0.00161 0.00249 0.00221 —0.00260 0.00969 0.00468 0.00275 0.00249
800 0.00080 0.00130 0.00109 —0.00132 0.00475 0.00249 0.00135 0.00133
n a=15 p=0.8 A=2 0=0.5
MSE Bias MSE Bias MSE Bias MSE Bias
25 0.11213 0.06281 0.01240 —0.00754 0.27232 0.07874 0.01702 0.01968
50 0.04859 0.03436 0.00233 —0.00603 0.11853 0.03072 0.00740 0.00768
100 0.02259 0.01726 0.00097 —0.00333 0.05739 0.01551 0.00358 0.00387
150 0.01524 0.01245 0.00063 —0.00230 0.03877 0.01028 0.00242 0.00257
200 0.01126 0.01010 0.00046 —0.00189 0.02875 0.00573 0.00179 0.00143
400 0.00569 0.00467 0.00023 —0.00084 0.01451 0.00359 0.00090 0.00089
800 0.00283 0.00244 0.00011 —0.00045 0.00710 0.00181 0.00044 0.00045
9. Application

In this section, we use the remission times (in months) of a
random sample of 128 bladder cancer patients reported in
Lee and Wang (2003).

Table 2: The remission times (in months) of a random
sample of 128 bladder cancer patients (Lee and Wang, 2003)
0.08] 2.09]|3.48|4.87|6.94| 8.66 |13.11|23.63| 0.20 | 2.23
3.52]4.98]6.97]9.0213.29/ 0.40 | 2.26 | 3.57 | 5.06 | 7.09
9.22113.80|25.74| 0.50 | 2.46 | 3.64 | 5.09 | 7.26 | 9.47 |14.24
25.82| 051|254 | 3.70| 5.17| 7.28 | 9.74 |14.76/26.31| 0.81
2.62| 3.82|5.32|7.3210.06(14.77|32.15| 2.64 | 3.88 | 5.32
7.39110.34|14.83|34.26/ 0.90 | 2.69 | 4.18 | 5.34 | 7.59 |10.66
15.96/36.66| 1.05| 2.69 | 4.23 | 5.41 | 7.62 |10.75|16.62|43.01
119|2.75|4.26 | 5.41| 7.63|17.12|146.12| 1.26 | 2.83 [12.63
4.33|5.49|7.66 [11.25/17.14({79.05| 1.35 | 2.87 | 5.62 | 7.87
11.64]17.36] 1.40 | 3.02 | 4.34 | 5.71 | 7.93[11.79]18.10| 1.46
4.40 | 5.85| 8.26 |11.98{19.13]| 1.76 | 3.25| 450 | 6.25 | 8.37
12.02| 2.02 | 3.31 | 4.51 | 6.54 | 8.53 |12.03/20.28| 2.02 | 3.36
6.76 |12.07|21.73] 2.07 | 3.36 | 6.93 | 8.65 [22.69

The estimated values of the parameters, —2 log-likelihood
statistic, Akaike information criterion (AIC), Bayesian
information criterion (BIC), and the Kolmogorov—Smirnov
(KS) statistics and the associated p-values are presented in
Table 3, for EMOEx and other alternatives including
Exponential, Extension Exponential-Geometric (EEG), Inv
Gaussian, Frechet and Log-normal distributions.

Table 3: Fitted estimates for different distributions

Distribution -2Log

AIC BIC KS |p-Value

EMOEx | @ =1.707 |426.79

861.58

872.988(0.04784| 0.9313

EEG 452.115

908.23

913.934|0.0846 | 0.31834

Exponential |§ = 0.10677459.677

021.355(924.207|0.08462

0.30123

Inv. =01 [492.639
Gaussian | § = 9.3656

089.278(994.982

0.1060 | 0.1044
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Frechet |&@ = 1.0673 |481.992(967.985(973.689|0.1350 | 0.0169
6 =3.3383
Log-normal | @ = 1.0731 |447.555|899.11 {904.814|0.3070 |0.000041
6 =1.7535

From table 2 and table 3, we observe that the EMOEXx
distribution is a competitive distribution compared with
other distributions. In fact, based on the values of the —2 log,
AIC, BIC, and KS criterion, we observe that the EMOEX
distribution provides the best fit for the data sets among all
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the models considered. The results in Table 3 have been
examined using the Q-Q plots. From the Q-Q plots in
Figure 1, we can achieve that EMOEX provides better fits
than other distributions considered in this paper.

Cearcle of bagat Sampl

~

Lareears of o pensssl

M i s e
T

- e - i

il o | wpa—"

Figure 3: Q-Q plot for the given data set

10. Conclusion

In this paper, we studied a new four-parameter model named
the exponentiated Marshall- Olkin exponential (EMOEX)
distribution. The EMOEXx density function is a linear
mixture of G-exponential densities. We derived explicit
expressions for its mathematical properties including the
ordinary moments, quantile, generating function, order
statistics, stress-strength analysis, quantile based Shannon
entropy. The model parameters are estimated by maximum
likelihood. The new distribution applied to real data sets
provides better fits than some other competitive models.
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