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Abstract: A new four-parameter model called the Exponentiated Marshall-Olkin Exponential distribution is examined. Several of its 

mathematical properties including ordinary moments, quantile, generating functions and order statistics are investigated. The 
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1. Introduction 
 

Many different ways of generating new distributions from 

classic ones were developed in the last few years. Marshall 

and Olkin (1997) introduced a method of adding a new 

parameter to an existing distribution. The resulting new 

distribution, known as the Marshall–Olkin extended 

distribution, includes the original distribution as a special 

case and gives more flexibility to model various types of 

data. Eugene et al. (2002) specified a class of beta-generated 

distribution. A family of distributions that arises naturally 

from the distribution of the order statistics was studied via 

Jones (2004),and he introduced general properties of the 

proposed class of distributions. Zografos and Balakrishnan 

(2009) projected the gamma-generated family of 

distributions. Subsequently, Cordeiro and de Castro (2011) 

defined the Kumaraswamy family. Latterly, Alzaatreh et al. 

(2013) proposed a new technique to derive wider families 

via using any probability density function (pdf) as a 

generator.  

 

In this article, we define and study a new four-parameter 

model called the Exponentiated Marshall-Olkin Exponential 

(EMOEx) distribution and provide some of its properties. 

We prove, via an application, that the EMOEx distribution 

can give better fits than many other distributions. 

 

The new model is generated by applying the exponentiated 

Marshal-Olkin-G (EMO-G) family (Dias et al., 2016) to the 

Exponential distribution. Diaset al. (2016) studied general 

mathematical properties of a new class of continuous 

distributions with three extra shape parameters called the 

exponentiated Marshal-Olkin family of distributions. This 

generator has cumulative distribution function (cdf) defined 

by: 
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where G(x; ξ ) is the baseline cdf depending on a parameter 

vector ξ and α > 0, λ >0 and p < 1 are three additional shape 

parameters. For each baseline G, the exponentiated 

 

Marshall-Olkin-G (“EMO-G” for short) distribution is 

defined by the cdf (1). 

 

The density function corresponding to (1) is given by: 
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where g(x; ξ ) is the baseline pdf. This density function will 

be most tractable when the functions G(x) and g(x) have 

simple analytic expressions. 

 

The contents of this paper are organized as follows. In 

Section 2, we define the EMOEx distribution. Shape and 

some plots for its pdf and hazard rate function (hrf) are 

displayed in Section 3. A comprehensive account of 

mathematical properties of the new distribution, include 

linear representation, the quantile function, the moments, the 

moment generating function and the order statistics are 

discussed and provided in Section 4.InSection 5, we 

demonstrate the maximum likelihood estimates (MLEs) of 

the unknown parameters and the asymptotic confidence 

intervals of the unknown parameters. An application of the 

EMOEx model is presented in Section 6. Finally, Section 7 

concludes this paper. 

2. The EMOEx Distribution 
 

In this paper, we introduce a special case of the EMO-G 

family which is the EMOEx model. This case is defined by 

taking G(x) and g(x) to be the cdf and pdf of the Exponential 

distribution. 

 

The cdf of the Exponential distribution is given by: 

  , 1 e              ,  0xG x x     (3) 

The corresponding pdf is given by 

  , e              ,  0xg x x     (4) 

 

The new model includes four parameters, referred to as the 

(EMOEx) distribution, with hope that it will use with many 

applications in different disciplines, as survival analysis, 
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reliability, biology and others. The fourth parameter indexed 

to this distribution makes it more flexible to identify 

different types of real data than other models. 

The new distribution has the cumulative distribution 

function which is defined by: 
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and the corresponding probability density function (pdf) is 

given by: 
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which it could be simplified into  
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 (6) 

 

where α> 0, λ> 0and 𝑝 ∈ (−∞, 1)are shape parameters and 

θ > 0 is a scale parameter. Hence, we denote by 𝑋~EMOEx 

(θ, α, λ, 𝑝) a random variable having pdf (6). 

The corresponding hazard rate function is: 
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 (7) 

3. Shape 
 

In the pdf of new distribution, the parameters 𝜆 𝛼 𝑎𝑛𝑑 𝑝 

control the shape distribution, whereas𝜃 controls the scale of 

the distribution. Figure 1 shows various shapes of the 

EMOEx pdf for different choices of parameters. 

 

 
Figure 1: Plots of the EMOEx pdf for varying parameter values 

 

 
Figure 2: Plots of the EMOEx h(x) for varying parameter values 

 

 Figure 2. shows various shapes of the EMOEx h(x) for 

different choices of parameters. 

 

The critical points of the EMOEx density function are the 

roots of the equation: 
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when we solve last equation, there is two solutions which is: 
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There may be more than one root to (8). Let𝜆 𝑥 =
𝑑2log [𝑓 𝑥 ]

𝑑𝑥2 . we have: 
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The model calculations based on first and second derivatives 

shows the mode of the density at 𝑥 = 𝑥0 for the EMOEx 

model has local maximum if 𝜆 𝑥 > 0for all 𝑥 < 𝑥0 and 

if𝜆 𝑥 < 0for all𝑥 > 𝑥0. It corresponds to a local minimum 

if  𝜆 𝑥 < 0  for all  𝑥 < 𝑥0 and 𝜆 𝑥 > 0 for all  𝑥 > 𝑥0. It 

gives a point of inflexion if either λ(x) > 0 for all 𝑥 ≠ 𝑥0  or  

𝜆 𝑥 < 0  for all 𝑥 ≠ 𝑥0 . 

 

The critical points of the (hrf) of X are obtained from the 

equation: 

 ln
0

d h x

dx

     

There may be more than one root to last equation. Le𝜏 𝑥 =
𝑑2log [ 𝑥 ]

𝑑𝑥2 .If𝑥 = 𝑥0is aroot of this equation then it refers to a 

local maximum if𝜏 𝑥 > 0 for all 𝑥 < 𝑥0  and if  𝜏 𝑥 < 0  

for all  𝑥 > 𝑥0. It corresponds to a local minimum if  

𝜏 𝑥 < 0  for all  𝑥 < 𝑥0and 𝜏 𝑥 > 0 for all  𝑥 > 𝑥0. It 

gives a point of inflexion if either 𝜏(x) > 0 for all 𝑥 ≠ 𝑥0  or  

𝜏 𝑥 < 0  for all 𝑥 ≠ 𝑥0 . 

 

4. Mathematical Properties 
 

In this section, we derive some mathematical properties of 

the new distribution, include linear representation, the 

quantile function, the moments, and order statistics. 

 

 

 

 

 

4.1Linear Representation 

 

Here, we originate a suitable linear mixture representation 

for the cdf and pdf of the EMOEx distribution. The cdf of 

the EMOEx in (5) can be conveyed as 

        1 1 1 1 1 1x xF x e p e
  

 


          
   

 

Applying the binomial expansion defined by 

    
0

1 1   ,             
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φ
   (9) 

Now, the cdf of the EMOEx reduces to 

 
   

Using the generalized binomial expansion defined by 

    
0

1 1   ,
j j

j

Z Z
j





 
    

 


φ

 (11) 

Therefore, we can write 

 
Then, equation (10) reduces to 

 
Using (11), we have 
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Then, the cdf of the EMOEx reduces to 
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and 𝐺𝑘(𝑥, 𝜃)𝑘  denotes the exponentiated-G (“exp-G”) cdf 

with power parameter k. 

 

The density function of X can be expressed as an infinite 

linear mixture of exp-G density functions 

        1
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  1 , ,  ,  
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   (15) 

where (for 𝑘 ≥ 0)  𝑘 + 1 𝑔 𝑥, 𝜃 𝐺𝑘(𝑥, 𝜃)𝑘  denotes the 

density function of the random variable Yk+1∼ exp-G(k + 1). 

Equation (15) discloses that the EMOEx density function is 

a linear mixture of exp-G density functions. Thus, some of 

its mathematical properties can be derived directly from 

those properties of the exp-G distribution. Some structural 

properties of the exp-G distributions are definite by 

Mudholkar and Hutson (1996), Gupta and Kundu (2001) and 

Nadarajah and Kotz (2006), among others. 

 

4.2 Quantile Function 

 

To find the quantile function, we need to solve the 

equation𝐹 𝑢 = 0, 0 < u <1. The quantile function of the 

EMOEx can be written as in the following theorem. 

 

Theorem 1. The quantile function of the EMOEx is given 

by 
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where θ > 0, λ > 0 , α > 0 

 

Proof. The CDF given in eq (5) can be written as 
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Then eq.(16) becomes 
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Therefore, we can write eq. (16) as 
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Corollary 1. The three quartiles of the EMOEx are given by 
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Proof. The proof comes directly by putting u = 0.25, 0.5, 

and 0.75 in the quantile function derived in Theorem 1. 

 

4.3 Order Statistics 

 

Let 𝑋1 …  , 𝑋𝑛  be a random sample of size 𝑛from the EMOEx 

distribution and 𝑋(1) …  , 𝑋(𝑛) be the consistent order 

statistics. Then, the pdf of the 𝑖th order statistic 𝑋𝑖:𝑛, say 

𝑓𝑖:(𝑥), is given by 
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Using equations (5) and (6), we can write 

 
  

Applying the expansions (9) and (11), we have 

  
 

   

 

 
1

0

1

1 1 1 1 1 1
i j

rr rx x

r

i j

p e p e

r

 
 


   

 



   
 

             
 
 

  

Paper ID: SR20614023257 DOI: 10.21275/SR20614023257 151 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583 

Volume 9 Issue 9, September 2020 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

and 

  
 

 

 

 
1

0

1

1 1 1 1   1 1
i j

mmx x

m

i j

e e

m

 
 


  

 



  
 

             
 
 

  

after some simplifications, we have 
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when we insert the last equation in equation (18), we 

achieve 
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Where 𝑔 𝑥, 𝜃 denotes pdf of the Exponential 

distribution, 𝐺𝑘(𝑥, 𝜃)𝑘  denotes the exponentiated-G (“exp-

G”) cdf with power parameter k, and 
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4.4Moments and the Moment Generating Function 

 

Theorem 2. The rth moments E(X
r
) of a EMOEx random variable X, is given by 
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Using the following binomial series expansion of(1 −
𝑒−𝜃𝜆𝑥)𝛼−1given by 
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using the following binomial series expansion of(1 −
𝑒−𝜃𝜆𝑥  𝑝)−𝛼−1given by 
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Eq. (21) takes the following form 
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using integrate by parts we get 
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Theorem 3. Let X have an EMOEx distribution. Then the moment generating function of X, 𝑀𝑥 𝑡 , is: 
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where1𝜓0is the Wright-generalised hypergeometric function. 
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Then equation (25) yields the following representation of the Wright-generalised hypergeometric function 
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5. Stress-strength Analysis 
 

There are applications (every physical component possess 

characteristic strength) which survive due to their strength. 

These applications receive an assured level of stress and 

sustain. But if a higher level of stress is applied then their 

strength is unable to sustain and they collapse. Suppose Y 

represents the „stress‟ which is applied to a certain appliance 

and X represents the „strength‟ to sustain the stress, then the 

stress-strength reliability is denoted by R= P(Y<X), if X,Y 

are assumed to be random. 

 

Suppose X and Y are random variables independently 

distributed as 

𝑋~𝐸𝑀𝑂𝐸𝑥(𝜃1, 𝛼1 , 𝜆1, 𝑝1) and 

𝑌~𝐸𝑀𝑂𝐸𝑥(𝜃2 , 𝛼2, 𝜆2, 𝑝2)with pdf's 
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Therefore, 
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using the binomial series, we obtain  
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Thus the reliability measure is determined by only on the 

slope parameters (𝛼1, 𝜃1, 𝜆1 , 𝑝1) and (𝛼2, 𝜃2, 𝜆2, 𝑝2). This 

could be used as a measure of the difference between two 

populations as well as the effectiveness of one medicine 

over other. 

 

6. Quantile based Shannon entropy  
 

In latest years, there has been a great concentration in the 

measurement of uncertainty of probability distributions. 

Suppose that X is a nonnegative continuous random variable 

representing the lifetime of a component with cumulative 

distribution function (CDF)𝐹 𝑡 = 𝑃(𝑋 ≤ 𝑡)and survival 

function𝐹  𝑡 = 𝑃 𝑋 > 𝑡 = 1 − 𝐹(𝑡). The measure of 

uncertainty defined by Shannon (1948) was 

 
where 𝑓 𝑋 is the probability density function of X. Last 

equation provides the expected uncertainty contained 

in𝑓 𝑋 about the predictability of an outcome of X, which is 

identified as Shannon entropy measure. 
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Many properties of the entropy function can be used as an 

alternative tool in modeling statistical data. Sometimes the 

quantile based approach is better in expressions of 

tractability. New models and characterizations that are 

unresolvable in the distribution function approach can be 

resolved with the aid of quantile approach. 

 

According to Sunoj and Sankaran, the Shannon entropy in 

(30) can be written in terms of quantile function as 

     
1

0

(ln   ,    X q u du    (31) 

where 𝑞 𝑢 = 𝑄 (𝑢) and 𝑄 (𝑢) represents quantile function 

of distribution. 

 

Evidently, by knowing either 𝑄 𝑢 or 𝑞 𝑢 , the expression 

for 𝜉 𝑋  is quite simple to compute.  

 

Thus, in order to obtain the Shannon entropy of EMOEx 

distribution we can use last equation and the 𝑄 𝑢 that has 

given in eq (31) as 

 
 

 

 

 

Therefore, we can obtain 

    
1

0

       (ln  X q u du  
 

 
where  

γis Euler‟s constant  γ, with numerical value ≃0.577216. 

 2𝐹1 1, 𝛼, 1 + 𝛼, 𝑝  is the hypergeometric function. 

𝜓 0  𝛼 is the  n
th

 derivative of the digamma function. 

 

7. Estimation 
 

The maximum likelihood method is the most commonly 

employed for approaches for parameter estimation in the 

literature. The maximum likelihood estimators (MLEs) can 

be used when constructing confidence intervals for the 

model parameters. In large samples, the normal 

approximation for these estimators could be easily treated 

either analytically or numerically. Therefore, we consider 

the estimation of the unknown parameters of this model 

from complete samples only by maximum likelihood. In this 

section, we find the MLEs of the parameters of the new 

model from complete samples. 

 

Let x1, . . . , xn be the observed values from the EMOEx 

distribution with parameters p, α, λ and θ. Let 𝛩 =
 (p, α, λ, θ)𝑇be the 𝑟 × 1 parameter vector. The log-

likelihood function for 𝛩, say ℓ = ℓ(𝛩), is given by 

      
1 1 1

ln 1 1 ln 1 e 1 ln 1 e  ,i i

n n n
x x

i

i i i

n p x p
        

  

                     (33) 

 

The maximized log-likelihood can be solving directly by 

using the NLMIXED procedure in SAS.  

d = ( 
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For interval estimation of the parameters of the EMOEx 

distribution, we necessitate the 4 × 4unit observed 

information matrix is 
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the ingredients of the 4 × 4 information matrix 𝐼𝑛 Θ are 

given by 
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The 4 × 4 unitobserved information matrix𝐼𝑛 Θ = {𝐼𝑛𝑠 }for 

𝑛 , 𝑠 =  𝛼, 𝜆, 𝑝, 𝜃 under standard regularity conditions, the 

multivariate normal 𝑁4(0, I θ  
−1
)distribution can be used to 

construct approximate confidence intervals for the model 

parameters. Here, 𝐼(𝜃 )is the total observed information 

matrix evaluated at 𝜃 . Then, approximate100 1 − 𝜙 % 

confidence intervals for the model parameters can be 

determined in the usual way of the first-order asymptotic 

theory. 

 

8. Simulation Study 
 

Here, a simulation study is completed to consider the 

average bias and average mean square error (MSE) of the 

simulated estimates. The equation f(x) − u = 0, where u is an 

observation from the uniform distribution (0,1), and F(x) is 

cumulative distribution function of EMOEx, used to 

complete the simulation study by generating random 

samples following EMOEx. The simulation experiment was 

repeated 5000 times each with sample sizes, 25, 50, 100, 
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150, 200, 400, 800 for (𝛼, 𝜃, 𝜆, 𝑝) = (0.8, 0.8, 1.5, 0.5) and 

(1.5, 0.5, 2, 0.8). The following measures are calculated: 

 

(i) Average bias of𝛼 , 𝜃 , 𝜆 and 𝑝 of the parameters 𝛼, 𝜃, 𝜆, 𝑝 

are, respectively: 
1

𝑁
  𝛼 −  𝛼 

𝑁

𝑖=1
,             

1

𝑁
  𝜃 −  𝜃 

𝑁

𝑖=1
,    

1

𝑁
  𝜆 −  𝜆 ,    𝑎𝑛𝑑 

𝑁

𝑖=1

1

𝑁
 (𝑝 −  𝑝)

𝑁

𝑖=1
 

 

The MSEs of 𝛼 , 𝜃 , 𝜆  and 𝑝  of the parameters 𝛼, 𝜃, 𝜆, 𝑝 

are, respectively: 
1

𝑁
  𝛼 −  𝛼 2

𝑁

𝑖=1
,             

1

𝑁
  𝜃 −  𝜃 

2
𝑁

𝑖=1
,    

1

𝑁
  𝜆 −  𝜆 

2
,    𝑎𝑛𝑑 

𝑁

𝑖=1

1

𝑁
 (𝑝 −  𝑝)2

𝑁

𝑖=1
 

From Table 1, it can be established that the MSE and the 

average bias decrease as the sample size increases. 

 

Table 1: Bias and MSE for the parameters𝛼, 𝜃, 𝜆, 𝑝 

n 
α = 0.8 p = 0.5 λ = 1.5 θ = 0.8 

MSE Bias MSE Bias MSE Bias MSE Bias 

25 0.03156 0.03806 0.86648 0.02079 0.17144 0.07073 0.04876 0.03772 

50 0.01378 0.01848 0.14809 −0.00884 0.08046 0.03636 0.02288 0.01939 

100 0.00642 0.00920 0.00970 −0.01044 0.03900 0.01930 0.01109 0.01029 

150 0.00433 0.00664 0.00607 −0.00722 0.02623 0.01313 0.00746 0.00700 

200 0.00320 0.00539 0.00446 −0.00588 0.01942 0.00828 0.00552 0.00442 

400 0.00161 0.00249 0.00221 −0.00260 0.00969 0.00468 0.00275 0.00249 

800 0.00080 0.00130 0.00109 −0.00132 0.00475 0.00249 0.00135 0.00133 

n 
α = 1.5 p = 0.8 λ = 2 θ = 0.5 

MSE Bias MSE Bias MSE Bias MSE Bias 

25 0.11213 0.06281 0.01240 −0.00754 0.27232 0.07874 0.01702 0.01968 

50 0.04859 0.03436 0.00233 −0.00603 0.11853 0.03072 0.00740 0.00768 

100 0.02259 0.01726 0.00097 −0.00333 0.05739 0.01551 0.00358 0.00387 

150 0.01524 0.01245 0.00063 −0.00230 0.03877 0.01028 0.00242 0.00257 

200 0.01126 0.01010 0.00046 −0.00189 0.02875 0.00573 0.00179 0.00143 

400 0.00569 0.00467 0.00023 −0.00084 0.01451 0.00359 0.00090 0.00089 

800 0.00283 0.00244 0.00011 −0.00045 0.00710 0.00181 0.00044 0.00045 

 

9. Application 
 

In this section, we use the remission times (in months) of a 

random sample of 128 bladder cancer patients reported in 

Lee and Wang (2003). 

 

Table 2: The remission times (in months) of a random 

sample of 128 bladder cancer patients (Lee and Wang, 2003) 
0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 

3.52 4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 

9.22 13.80 25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24 

25.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81 

2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32 

7.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66 

15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 

1.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 12.63 

4.33 5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 

11.64 17.36 1.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 

4.40 5.85 8.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 

12.02 2.02 3.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 

6.76 12.07 21.73 2.07 3.36 6.93 8.65 22.69   

 

The estimated values of the parameters, −2 log-likelihood 

statistic, Akaike information criterion (AIC), Bayesian 

information criterion (BIC), and the Kolmogorov–Smirnov 

(KS) statistics and the associated p-values are presented in 

Table 3, for EMOEx and other alternatives including 

Exponential, Extension Exponential-Geometric (EEG), Inv 

Gaussian, Frechet and Log-normal distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Fitted estimates for different distributions 
Distribution MLEs -2Log AIC BIC KS p-Value 

EMOEx 𝛼 = 1.707 426.79 861.58 872.988 0.04784 0.9313 

𝜃 = 0.339 

𝜆 = 0.271 

𝑝 = 0.598 

EEG 𝛼 = 0.1 452.115 908.23 913.934 0.0846 0.31834 

𝜃 = 0.1      

Exponential 𝜃 = 0.10677 459.677 921.355 924.207 0.08462 0.30123 

Inv.  

Gaussian 
𝜃 = 0.1 492.639 989.278 994.982 0.1060 0.1044 

𝜃 = 9.3656 

Paper ID: SR20614023257 DOI: 10.21275/SR20614023257 157 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583 

Volume 9 Issue 9, September 2020 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Frechet 𝛼 = 1.0673 481.992 967.985 973.689 0.1350 0.0169 

𝜃 = 3.3383 

Log-normal 𝛼 = 1.0731 447.555 899.11 904.814 0.3070 0.000041 

𝜃 = 1.7535 

 

From table 2 and table 3, we observe that the EMOEx 

distribution is a competitive distribution compared with 

other distributions. In fact, based on the values of the −2 log, 

AIC, BIC, and KS criterion, we observe that the EMOEx 

distribution provides the best fit for the data sets among all 

the models considered. The results in Table 3 have been 

examined using the Q–Q plots. From the Q–Q plots in 

Figure 1, we can achieve that EMOEx provides better fits 

than other distributions considered in this paper. 

 

 
Figure 3: Q-Q plot for the given data set 

 

10. Conclusion 
 

In this paper, we studied a new four-parameter model named 

the exponentiated Marshall- Olkin exponential (EMOEx) 

distribution. The EMOEx density function is a linear 

mixture of G-exponential densities. We derived explicit 

expressions for its mathematical properties including the 

ordinary moments, quantile, generating function, order 

statistics, stress-strength analysis, quantile based Shannon 

entropy. The model parameters are estimated by maximum 

likelihood. The new distribution applied to real data sets 

provides better fits than some other competitive models. 
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