# Dynamics of Groundwater Quality along the Buffer Gradient in Mysuru City Local Planning Area

# B. M. Krishna<sup>1</sup>, M. Vinay<sup>2</sup>, M. U. Pragna<sup>3</sup>, S. Aishwaryaa<sup>4</sup>, Mohammed Fawaz Nawaz<sup>5</sup>, K. Sindhu<sup>6</sup>

Department of Environmental Engineering, Sri Jayachamarajendra College of Engineering (SJCE), Mysuru-06, Karnataka, India

<sup>2</sup>Centre for Geoinformatics Technology, Department of Geography, University of Mysore, Mysuru-06, Karnataka, India

<sup>4</sup>Corresponding Author: *aishwaryaa.shashi[at]gmail.com* 

Abstract: The study includes spatiotemporal changes in the groundwater quality in MysuruCity Local Planning Area (LPA) using Geographic Information System(GIS). The secondary groundwater data of 9 stations for 22 years (from 1994 to 2016) was used to analyse the variations. Inverse distance weighted method as well as kriging method of the interpolationare used to prepare the distribution map of physico-chemical parameters of groundwater while overlay method is used to assess temporal changes and prepare groundwater quality zones of Mysuru city LPA. The results of the study show that the quality of groundwater varies both spatially and temporally in Mysuru city. The groundwater quality showed a decreasing trend in all the directional zones due to rapid urban sprawl.

Keywords: Physico-chemical parameters, groundwater, Geographic Information System (GIS), kriging, interpolation, Water Quality Index (WQI), transect profile

## 1. Introduction

Groundwater is a water resource which occurs underneath the Earth's surface where it possesses all or a part of the void spaces in geologic strata. Groundwater quality relies upon the quality of recharged water, atmospheric precipitation, inland surface water and sub-surface geochemical forms. Temporal changes in the source and constitution of the recharged water, hydrologic and human factors may cause periodic changes in groundwater quality yet in addition harms human wellbeing, economic development and social flourishing. The increase in urbanization results in reduction in infiltration, which affects the groundwater recharge and storage thereby causing depletion in the groundwater table (Sneha et.al., 2016). Access to clean freshwater will be one of the biggest global resource problem of the coming decades. Appropriate access to drinking water is considered as one of the essential aspects of water management, strategic populace management and future planning for urban advancement in macro level. This is while access to healthy water for human use is one of the present serious concerns. In fact, water is an incredible chemical media with high ability in exchanging a wide range of substances. Accordingly, it tends to be easily contaminated. Water resources are dynamically affected and contaminated by various factors such as, human, rural, and industrial activities and thus, presently we can watch the water quality in the undesirable condition brought about by those activities. Hence, to secure them, it is essential to explicitly determine the effect of land use changes on water quality patterns over time which in turn requires utilizing appropriate tools and techniques for analysing and foreseeing these effects.

## 2. Study Area

Mysuru is the second largest city in the state of Karnataka.It is located between  $12^{\circ}18$ 'N and  $12^{\circ}30$ 'N latitudes and  $76^{\circ}39$ 'E and  $76^{\circ}42$ 'E longitudes and has an average

altitudeof 770 meters (2,526 ft). Mysuru has a warm and cool climate throughout the year. It is salubrious, too. The climate of Mysuru is moderate. The weather in winter is cool and summers are bearable. The minimum temperature in winter is around  $15^{\circ}$  Celsius and in summer the maximum temperature is around  $35^{\circ}$  Celsius. Mysuru gets most of its rains during the monsoon between June and September. The annual average rainfall of Mysuru is around 860 mm. The summer season is from March to June, followed by the monsoon season from July to November and the winter season is from December to February. Mysuru lies however in the tropics, with summer temperatures ranging from  $21^{\circ}$  to  $35^{\circ}$  Celsius, while winter sees the temperatures dropping down from  $30^{\circ}$  to  $12^{\circ}$  C. (Mahalingam et.al.,2015)

## 3. Materials and Methodology

The Mysuru LPA boundary map was obtained from the Mysuru Urban Development Authority- MUDA. The ground water levels (in meters) and ground water quality (mg/L) data from the year 1994 to 2016 were collected from the Groundwater Directoriate, Saraswatipuram, Mysuru (Appendix). Landsat was the source for satellite images of the study area and they were downloaded from the website - www.earthexplorer.usgs.gov

#### Software used:

- 1) MS Excel Data arrangements
- 2) ArcGIS -Interpolation, mapping, transect profiles, zonal statistics

#### Three kinds of analysis were carried out, that is:

- a) Calculation of Water Quality Index (WQI)
- b) Spatial variation of WQI
- c) Temporal variation of WQI

The suitability of groundwater of the study area was examined based on percent compliance of the measured data

with respect to Indian Standard for drinking water (Bureau of Indian Standards – BIS, 1994).

representation of the numerical data.**Fig 1**represents the data flow and different analysis and operations carried out.

ArcGIS 10.5 has been used for spatial interpolation.MS excel has been used to encode, analyze and create graphical



Figure 1: Flow chart showing the data flow and different analysis and operations carried out in the present study

#### 4. Results and Discussion

a) Groundwater Chemical Standards: Changes within the water quality are more intense in shallow groundwater level aquifers than in deeper ones, the rationale being that shallow aquifers are easily stricken by human activities and differences due to the season. The various predominant parameters considered in the study area are – Calcium (Ca), Magnesium (Mg), Chloride (Cl), Nitrate (NO<sub>3</sub>), Total Dissolved Solids (TDS), Total Hardness (TH), pH, Bicarbonate (HCO<sub>3</sub>), Sulphate (SO<sub>4</sub>), Iron (Fe). These values were obtained for all the stations in the study area from the year 1994 to 2016.

The suitability of groundwater of the study area was examined based on percent compliance of the measured data with respect to Indian Standard for drinking water (**Bureau of Indian Standards – BIS, 1994).Table 1** shows standards for the required parameters is given below:

|                                  | -                      |
|----------------------------------|------------------------|
| Chemical Parameters <sup>a</sup> | Standards <sup>b</sup> |
| Calcium                          | 75 - 200               |
| Magnesium                        | 30 - 100               |
| Chloride                         | 250 - 1000             |
| Nitrate                          | 45 - 100               |
| Total Dissolved Solids           | 500 - 2000             |
| Total Hardness                   | 300 - 600              |
| рН                               | 6.5 - 8.5              |
| Bicarbonate                      | 244 - 732              |
| Sulphate                         | 200 - 400              |
| Iron                             | 0.3 – 1.0              |

Table 1: BIS (1991) Standards for Drinking Water

<sup>a</sup> Chemical parameters in mg/L

<sup>b</sup> Lower value indicates desirable limit, and higher value indicates permissible limit in the absence of alternate source (Bureau of Indian Standards, 1991)

#### b) Groundwater Quality in Mysuru City LPA:

The WQI was computed through three steps n this study. First, each of the ten parameters (pH, TDS, total hardness, HCO<sub>3</sub>, Cl, SO<sub>4</sub>, NO<sub>3</sub>, Ca, Mg and Fe) was assigned a weight (wi) according to its relative importance in the overall quality of water for drinking purposes. The maximum weight of 5 was assigned to nitrate because of its major importance in water quality assessment. Other parameters like pH, TDS, total hardness, HCO<sub>3</sub>, Cl, SO<sub>4</sub>, Ca, Mg and Fe were appointed weights between 1 and 5 based on their relative significance within the water quality analysis. (Ramakrishnaiah et.al., 2008)

Second, the relative weight (Wi) of the chemical parameter was computed using the following equation:

$$Wi = \frac{Wi}{\sum_{i=1}^{n} Wi}$$

Where,

Wi is the relative weight

wi is the weight of each parameter, and

n is the number of parameters.

The calculated relative weights for the respective chemical parameters are shown below in the **Table 2**.

| Table 2: Relative | weight of | chemical | parameters |
|-------------------|-----------|----------|------------|
|-------------------|-----------|----------|------------|

| Chemical Parameters    | Weight (wi)      | Relative weight (Wi) |  |  |  |
|------------------------|------------------|----------------------|--|--|--|
| Calcium                | 2                | 0.061                |  |  |  |
| Magnesium              | 2                | 0.061                |  |  |  |
| Chloride               | 3                | 0.091                |  |  |  |
| Nitrate                | 5                | 0.151                |  |  |  |
| Total Dissolved Solids | 4                | 0.121                |  |  |  |
| Total Hardness         | 2                | 0.061                |  |  |  |
| pH                     | 4                | 0.121                |  |  |  |
| Bicarbonate            | 3                | 0.091                |  |  |  |
| Sulphate               | 4                | 0.121                |  |  |  |
| Iron                   | 4                | 0.121                |  |  |  |
|                        | $\Sigma wi = 33$ | $\Sigma W i = 1.0$   |  |  |  |

Volume 9 Issue 9, September 2020 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

In the third step, a quality rating scale (qi) for each parameter is assigned by dividing its concentration in eachwater sample by its respective standard according to guidelines(BIS, 1991), and the result is multiplied by 100:

$$qi = \left(\frac{Ci}{Si}\right) * 100$$

Where,

qi is the quality rating,

Ci is the concentration of each chemical parameter in each watersample in mg/L,

Si is the Indian drinking water standard for each chemical parameter in mg/L.

For computing WQI, the sub index (SI) is first determined for each chemical parameter, as given below:

SIi = Wi \* qi

 $WQI = \sum SIi \text{ of } n \text{ parameters}$ 

Where,

SIi is the sub index of i<sup>th</sup> parameter; Wi is relative weight of i<sup>th</sup> parameter;

qi is the rating based on concentration of i<sup>th</sup> parameter, and n is the number of chemical parameters.

The computed Water Quality Index values are classified into 5 categories:

| < 50     | Very high quality |
|----------|-------------------|
| 50 - 100 | High quality      |
| 100 -    | Medium quality    |
| 200      |                   |
| 200 -    | Low quality       |
| 300      |                   |
| > 300    | Very low quality  |

The WQI values obtained for different stations are represented in the following **Table 3**,

| <b>Table 5.</b> Calculated $(0,0)$ values of affected stations from $1777$ to $2010$ |
|--------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------|

|          | Tuble of Calculated () Q1 values of american stations from 1991 to 2010 |             |           |          |          |           |            |
|----------|-------------------------------------------------------------------------|-------------|-----------|----------|----------|-----------|------------|
| STATION  | Alanahalli                                                              | Keelanapura | Jayapura  | Kadakola | Bhogadi  | Elwala    | Devalapura |
| x_long   | 76.703                                                                  | 76.818      | 76.556    | 76.667   | 76.599   | 76.543    | 76.701     |
| y_lat    | 12.298                                                                  | 12.253      | 12.204    | 12.192   | 12.304   | 12.358    | 12.223     |
| WQI_1994 | 105.1984                                                                | -           | -         | -        | 75.0895  | -         | 116.61409  |
| WQI_1995 | 94.76623                                                                | -           | 94.828175 | -        | 56.53635 | -         | 130.65084  |
| WQI_1996 | 39.29098                                                                | -           | 124.48472 | -        | 123.1996 | -         | 161.28694  |
| WQI_1997 | 0                                                                       | -           | 0         | -        | 0        | -         | 0          |
| WQI_1998 | 48.77958                                                                | -           | 100.18451 | -        | 77.33243 | -         | 81.183729  |
| WQI_1999 | 63.53234                                                                | -           | 111.69342 | -        | 99.48627 | -         | 119.55494  |
| WQI_2000 | 55.70986                                                                | -           | 157.64664 | 145.6778 | 178.1992 | 140.12587 | 139.20676  |
| WQI_2001 | 70.70132                                                                | -           | 188.65975 | 234.8488 | 81.13736 | 391.46892 | 311.89689  |
| WQI_2002 | 111.0063                                                                | 123.5811    | 174.15851 | 76.70215 | 164.1244 | 187.72808 | 94.398768  |
| WQI_2003 | 86.49326                                                                | 57.62231    | 77.369974 | 122.0207 | 129.9302 | 166.8272  | 109.9976   |
| WQI_2004 | 86.65449                                                                | 146.254     | 197.56081 | 257.2722 | 270.613  | 186.90601 | 133.38941  |
| WQI_2005 | 116.2613                                                                | 215.4045    | 266.11094 | 332.066  | 461.4829 | 268.80604 | 85.046331  |
| WQI_2006 | 104.0064                                                                | 134.3749    | 118.63153 | 210.264  | 161.5848 | 123.28532 | 171.1354   |
| WQI_2007 | 103.9764                                                                | 110.6368    | 207.75065 | 211.3658 | 171.4382 | 92.655471 | 222.83405  |
| WQI_2008 | 91.10975                                                                | 103.7373    | 251.13303 | 216.4805 | 294.9491 | 254.33913 | 154.80709  |
| WQI_2009 | 45.84485                                                                | 150.0393    | 260.46607 | 147.6431 | 134.6153 | 185.68756 | 170.32329  |
| WQI_2010 | 78.4293                                                                 | 159.8274    | 272.69834 | 355.7912 | 208.06   | 186.64214 | 208.33435  |
| WQI_2011 | 105.8667                                                                | 63.20193    | 204.9408  | 107.191  | 167.9852 | 150.73216 | 143.62726  |
| WQI_2012 | 36.02985                                                                | 57.01431    | 73.873431 | 86.04547 | 89.7504  | 113.95054 | 122.35867  |
| WQI_2013 | 86.24915                                                                | 124.1246    | 179.75765 | 192.1045 | 106.049  | 123.05256 | 112.16993  |
| WQI_2014 | 75.66877                                                                | 117.7021    | 136.78657 | 201.7239 | 164.8431 | 156.68514 | 113.72296  |
| WQI_2015 | 0                                                                       | 27.48267    | 61.621333 | 61.17115 | 0        | 12.605333 | 52.938667  |
| WQI_2016 | 122.6257                                                                | 237.5505    | 346.67533 | 88.34862 | 82.97272 | 239.20872 | 108.32746  |

#### c) Spatial Variation of Groundwater Quality:



Volume 9 Issue 9, September 2020

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

### International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583



Fig Set 1: The Above Maps Represent Groundwater Quality Spatial Distribution in Mysuru City Local Planning Area (LPA) from 1994-2016.

Based on the Groundwater Quality Index of Mysore city LPA from the annual assessment year 1994 to 2016 shown in the **Fig Set**, it is evident that the groundwater quality is highly fluctuating annually due to various factors mainly climate change, urban growth, agricultural and domestic activities, run-off etc (Subramani et.al.,2012). During the year 2005, the quality was very low since the rainfall in 2005 and 2006 was least according to the meteorological data. Lower the rainfall directly affects the composition of the groundwater.

#### d) Temporal Variation of Groundwater Quality:

As per the directional temporal variations of WQI during the year 1994-2016 shown in the below figures, the groundwater quality was very high in the year 2015 in all the directions

that is, north, north-east, east, south-east, south, south-west, west and north-west due to replenishment of groundwater aquifer but low quality was observed in the year 2005, which is explained in the previous paragraph. Whereas the variations in mean WQI pattern was found to be irregular during the rest.

Volume 9 Issue 9, September 2020 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583



Figure 2: Temporal Variation of WQI towards North-East



Figure 3: Temporal Variation of WQI towards North



Figure 4: Temporal Variation of WQI towards East



Figure 5: Temporal Variation of WQI towards South-East



Figure 6: Temporal Variation of WQI towards North





## Volume 9 Issue 9, September 2020

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY



Figure 8: Temporal Variation of WQI towards North



Figure 9: Temporal Variation of WQI towards North-West

## 5. Conclusions

As per the analysis there are variations in the quality of groundwater in Mysuru City LPA from the year 1994 to 2016. Urban and rural areas are significant sources of multipoint and heterogeneouspollution of groundwater. Improper handling, treatment and management ofhousehold wastes and wastewater, industrial effluents, uncontrolled wastedisposal sites, rain and melt water arethe main sources of multipoint pollution of municipal groundwater.Polluted runoff water from road surfaces (oil hydrocarbons, various salts), soiland groundwater acidification by transport emissions and particularly spills due toroad accidents, can have an immediate effect on groundwater quality in areaswhere roads are crossing vulnerable areas of aquifers. The intensification of agricultural production leads to Nitrate pollution of groundwater in rural areas in developing countries and it is mostly affected by point pollution sources. The quality of groundwater in public and domestic wells is affected by their poor construction, being located close to sources of pollution (septic tanks, latrines, animal slurry dumps) or by excrements surrounding some water supplies (Rizwan et.al.,). Even precipitation plays a key role as a natural regulating factor for the variations in groundwater quality.

## References

- Kosha A Shah and Geeta S. Joshi, 2015. "Evaluation of Water Quality Index for River Sabarmati Gujarat, India". Appl Water Sci (2017) 7:1349-1358.
- [2] Madan Jha K, et.al., 2007."Ground Water Management & Development by Integrated Remote Sensing & Geographic Information Systems: Prospects and Constraints." Water Resources Management, Vol-21, issue 2, pp427-467.
- [3] Mahalingam B, et.al., 2015. "Analysis of selected spatial interpolation techniques for rainfall data". International Journal of Current Research & Review, Vol.7, issue 7.
- [4] Mahalingam B, et.al., 2014. "Assessment of Ground Water Quality using GIS Techniques: A case study of Mysore city". International Journal of Engineering and Innovative technology (IJEIT), Vol-3, issue-8.
- [5] Ramakrishnaiah C. R et.al., 2008. "Assessment of Water Quality Index for the Groundwater in Tumkur Taluk, Karnataka State, India". ISSN:0973-4945; CODEN ECJHAO E-Journal of Chemistry 2009, 6(2),523-530.
- [6] Rizwan Reza and Gurdeep Singh, 2010. "Assessment of Ground Water Quality Status by Using Water Quality Index Method in Orissa, India". World Applied Sciences Journal 9 (12): 1392-1397, 2010 ISSN 1818-4592.
- [7] Sneha S. Phadatare and Prof.Sagar M. Gawande, 2016. "Assessment and Development of Water Quality Index in southeastern region of Satara". Imperial Journal of Interdisciplinary Research (IJIR), Vol-2, Issue-7. ISSN:2454-1362.
- [8] Subramani T, Krishnan S and Kumaresan P. K, 2012. "Study of Ground Water Quality with GIS Application for Coonoor Taluk in Nilgiri district". International Journal of Modern Engineering Research (IJMER), Vol-2, issue-3, pp 586-592.
- [9] Surjeet Singh, et.al., 2015. "Development of an Overall Water Quality Index (OWQI) for Surface Water in Indian Context". Vol 10(3), 813-822.

Volume 9 Issue 9, September 2020 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY