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Abstract: A numerical method in real-space is developed to solve the polymeric self-consistent field equations. In this report, we apply 

our method to AB linear diblock copolymer melt, thus reproduce stable phase ”lamellae” which is the simplest ordered phase and have 

comparable volume fractions of both polymers. We also reproduce “cylinder (hexagonal in 2D) phases” for noncomparable volume 

fractions of both the polymers. Also pseudo-spectral method is used which uses Fourier space and has higher accuracy than central 

difference differentiation method. The calculation area used in method to solve stability of phase is a cube in 3D. 

 

1. Introduction 
 

Diblock polymers can be assembled to various ordered 

structures, which is favoured because it helps to avoid 

energetically unfavourable contacts between A and B 

polymer molecule. Various ordered structures are formed 

depending on the volume fractions of the monomers present. 

We get cubic, hexagonal, gyroid, double diamond, catenoid 

lamellae, and many others beside lamellae. SCFT is a big 

tool for studying these equilibrium phase behaviour of block 

copolymers. By searching for the solutions of the self-

consistent field equations, we can find the equilibrium 

ordered patterns of diblock copolymer. We apply SCFT 

equations to solve for the stable lamellae phase which is rich 

in both A and B (in terms of volume fractions). Since 

solving SCFT is not trivial as it involves a lot of non-linear 

equations, iterative and convergence methods are used to 

find the solutions of stable phase. Prior information 

regarding states is not required to find the stable phases but 

to accelerate convergence of iterative methods, we use some 

known initial values of fields of the phase. It can be noted 

that the patterns in stable block copolymers exhibit periodic 

symmetry. We carry out our method to get convergent free 

energy of diblock copolymer according to SCFT which does 

signify the stability of phase. 

 

2. Problem Formulation 
 

First let us write out main equation that we are trying to 

solve and then expain terms and how to get to these terms. 

The free energy density is given by 

  

 

                            (1) 

 

where χAB is the FloryHuggins segment segment interaction 

parameter, ωA(r), ωB (r) are the external fields, which act on 

A and B monomers respectively. The normalized segment 

density operators are φA and φB at r. Xi is the deviation that 

we get in unstable state as there is some non-zero value in 

φA+ φB−1. Q is the single-chain partition function, which is 

determined by 

                                (2) 

The forward propagator q(r,s) represents the probability 

density that the chain of contour length s has its end at 

position r, where the variable s is used to parameter each 

copolymer chain, s = 0 represents the tail of the A block and 

s = f is the junction between the A and B blocks. A-

monomer fraction is f. Correspondingly, the B-monomer 

fraction is 1 - f. q satisfies the modified diffusion equation, 

           (3) 

where N is the total degree of polymerization of diblock 

copolymer. The respective external field acting on the 

blocks and deviation are given by 

ωA= ωA+ λ(χABφB−ωA+ Xi) (4) 

ωB= ωB+ λ(χABφA−ωB+ Xi) (5) 

Xi = Xi + λ(φA+ φB−1) (6) 

where λ is the mixing parameter and is usually taken to be 

less then 0.1. We combine these external fields ωAand ωBto 

easily solve MDE. 

ω = ωA for 0 ≤ s ≤ f (7) 

ω = ωB for f < s ≤ 1 (8) 

The above relation is opposite for qd(r,s) which is the 

reverse propagator. At s=0, both q and qd have value 1 at all 

r as probability at s=0 is 1. 

q(r,0) = 1                           (9) 

 

 qd(r,0) = 1                          (10) 

φA and φB are given by: 

 
 

3. Numerical Method 
 

We first start with close initial value approximation of ωA 

and ωB of lamellae state. Then we solve the modified 

diffusion equation using pseudo spectral method which 

changes the equation into simply 

qn+1 = R∆s × qn                                 (13) 
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where R∆s is 

                     (14) 

 

We calculate fourier transform using FFT of first exponent 

and multiply with the corresponding fourier transform of the 

2
nd 

exponent. Then we take inverse fourier transform of 

product and multiply with the third exponent to get R∆s and 

thus qn+1. Once we get new q, we substitute it in φ equations 

and get the respective φ. Then we calculate free energy. This 

completes first iteration. To get new ωA and ωB we use the 

respective equations given above and carry out the above 

operations to get free energy again. Thus, when free energy 

converges we can be convinced that a particular stable state 

is found. Since the solution is periodic we use boundary 

conditions in which the value of q at a particular s is same at 

boundaries, i.e., q at r=L+1 is equal to q at r=1; where r=1 

signifies x=y=z=1 and L is the end of a particular dimension. 

We repeated the same for the cylinder (hexagonal in 2D) 

phase. 

 

 

4. Results and Discussion 
 

The algorithm described above has been applied to a diblock 

copolymer melt and the random sinusoidal variation to 

calculate initial value of ω results in finding the stable phase 

of lamellae easily. Although it can also be found that if we 

take any other initial approximation the method works but 

our chosen initial approximation helps to accelerate the 

convergence. To see the result of our method, if we plot the 

values of the average volume density of one of the polymer 

we see that alternating stripes of band involving high and 

low density of one of the polymer are observed. The 

advantage of our method over Matsen-Schick’s method is 

that Matsen-Schick’s method cannot be used to discover 

new patterns straightforwardly. Our strategy only needs to 

add a little symmetric information into the initial estimation. 

It is more adaptive and flexible for discovering new patterns 

with less computational effort. Also, the use of pseudo 

spectral method of RK2 involves the symmetric breakup of 

the ω operator which in turn ensures RK2 that odd powers 

of the global error are eliminated. Also our method is far 

more accurate in calculating q than central difference 

differentiation. (a) lamellae(2D)  (b) lamellae(3D) 

 

 
(c) Hexagonal (2D)                                                         (d) Cylinder (3D) 

 

5. Path Forward 
 

The future work includes application of this method to 

triblock polymers, improving convergence by use of 

anderson mixing rather than simple mixing in calculation of 

ω, use of CGF4 algorithm (developed by Cochran, Garca-

Cervera and Fredrickson) or extension of RK2 to fourth-

order using Richardson extrapolation to calculate q. Also, 

the behavior of nano particles can be examined. 

 

6. Conclusion 
 

A numerical method which does not need a priori symmetric 

information and solves the SCFT based on real space whose 

calculation area is cubic in 3D is developed. The method is 

applied to diblock copolymer system. As mentioned earlier, 

the SCFT equations are nonlinear system and have multiple 

solutions. An efficient method for estimating optimized 

initial values of lamellae and cylinder (hexagonal in 2D) 

phase is given. Using that method, we calculated stable 
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lamellae and cylinder (hexagonal in 2D) phases of diblock 

copolymer. We also used simple mixing to calculate external 

fields which fastens convergence. Numerical examples 

demonstrate that our method has some advantages over the 

one which uses central difference differentiation to calculate 

MDE. 
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