Extended Bolzano Weierstrass Theorem

Dr. K. L. Kaushik

Associate Professor in Mathematics, Aggarwal College Ballabgarh, Faridabad, India

Abstract: In this paper we have proved the Extended Bolzano Weierstrass theorem i.e. "Let $\binom{a_n}{n=1}^{\infty}$ be an bounded sequence. Define the set $G = \{x \in R : x < a_n\}$ for infinitely many terms $a_n\}$ Then $\exists a$ subsequence (a_{nk}) converges to a supremum of the set G."

Keywords: Convergence, Bounded, supremum, Completeness

1. Introduction

We define the convergence of a sequence, bounded sequence and the supremeum. Then in Theorem 2.1 we showed that " $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$ and $(c_n)_{n=1}^{\infty}$ are three real sequences such that $a_n \leq b_n \leq c_n \forall n$. If $(a_n)_{n=1}^{\infty}$ and $(c_n)_{n=1}^{\infty}$ both converges to the same limit then $(b_n)_{n=1}^{\infty}$ also converges to the same limit. Then in Theorem 2.2 we showed that "Supremum of a bounded set is the least element of the set of upper bounds of that set".

Then Finally we proved the Extended Bolzano Weierstrass theorem in which we defined a set for each bounded sequence whose supremum is the limit of the subsequence of that sequence.

Notation : $B(a, \epsilon)$ denotes an neighbourhood of a which is an open ball with centre a and radius $\epsilon > 0$ in \mathbb{R} i.e. $B(a, \epsilon) = \{x \in \mathbb{R} : |x - a| < \epsilon\}$ [1]

1.1 Convergence of Sequence

A Real sequence $(\mathcal{X}_n)_{n=1}^{\infty}$ is said to be converges to a real number x if for any >0 there exist a natural number $m \in \mathbb{N}$ such that

$$\begin{aligned} |x_n - x| < \epsilon_{\forall} \qquad n \ge n \\ OR \end{aligned}$$

A Real sequence $(x_n)_{n=1}^{\infty}$ is said to be converges to a real number x if the sequence $(x_n)_{n=1}^{\infty}$ is eventually is in each neighbourhood of x.[3]

1.2 Bounded Sequence

A Sequence $(x_n)_{n=0}^{\infty}$ is said to be bounded if there exist a real number M > 0 such that

$$|x_n| \leq M \forall n \in \mathbb{N}$$

1.3 Supremum (Least upper bound)

Let *S*be any non empty subset of real numbers R. Then a real number α is said to be the supremum of the set *S* if 1. $x \le \alpha \forall x \in S$ 2. For any $\epsilon > 0 \exists$ an element $x \in S$ such that $\alpha - \epsilon < \mathcal{X}$

1.4 Least element of a set

Let S be any subset of R then a real number α is said to be a least element of the set S if

1. $\alpha \leq x \forall x \in S$

2. $\alpha \in S$

1.5 Completeness Property

Every non empty bounded above subset of real numbers have a least upper bound (i.e. supremum).

1.6 Properties of order relation in R

1. Law of Trichotomy:- For any two numbers a, b in R only one of the following holds

$$a > b, a = b, a < b$$

2. Transitive:- For all $a, b, c \in \mathbb{R}$ we have

$$a < b and b < c \Rightarrow a < c$$

Compatibility of order relation with addition :- For all *a*, *b*, *c*∈ R we have

$$a < b \Rightarrow a + c < b + c$$

2. Related Theorems

Theorem 2.1. Let $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$ and $(c_n)_{n=1}^{\infty}$ are three real sequences such that $a_n \leq c_n$

$$b_n \leq c_n \ \forall \ n \in \mathbb{N}$$
. If $(a_n)_{n=1}^{\infty} and (c_n)_{n=1}^{\infty} both$

converges to the same limit then $(0_n)_{n=1}^{\infty}$ also converges to the same limit.[2]

Proof. Let $(a_n)_{n=0}^{\infty}$, $(b_n)_{n=0}^{\infty}$ and $(c_n)_{n=0}^{\infty}$ are any sequence of real numbers such that $a_n \le b_n \le c_n \forall n$

Suppose $(a_n)_{n=0}^{\infty}$ and $(C_n)_{n=0}^{\infty}$ converges to the same limit say α .

Then for any $\epsilon > 0$ \exists natural number n_1 and n_2 such that $|a_n - \alpha| \le \epsilon \quad \forall \quad n \ge n_1$

$$\begin{aligned} |c_n - \alpha| &\leq \epsilon \ \forall \ n \geq n_2 \\ \Rightarrow -\epsilon < a_n - \alpha < \epsilon \ \forall \ n \geq n_1 \ and \ \epsilon < c_n - \alpha < \epsilon \ \forall \ n \geq n_2 \quad -(1) \\ \text{Now let } N = \max\{n_1, n_2\}. \text{ Then as} \\ a_n \leq b_n \leq c_n \forall \ n \Rightarrow a_n \leq b_n \leq c_n \forall \ N \end{aligned}$$

Volume 9 Issue 8, August 2020

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/SR20815190956

By the Compatibility of order relation with addition in R (1.4) we have

$$\Rightarrow a_n - \alpha \le b_n - \alpha \le c_n - \alpha \forall n \ge N$$

Then by (1) we have $-\epsilon < a_n - \alpha \le b_n - \alpha \le c_n - \alpha < \epsilon \ \forall \ n \ge N$

 $\Rightarrow |b_n - \alpha| \le \epsilon \ \forall \ n \ge N$ $\therefore \text{ the sequence } (b_n)_{n=0}^{\infty} \text{ also converges to the same limit } \alpha.$

Theorem 2.2: Supremum of a bounded subset of Real numbers is the least element of the set of all the the upper bound of that set

Proof. Let S be any bounded subset of R Then By the Completeness property S have a least upper bound say α

Define a set

$$T = \{a \in \mathbb{R} : a \text{ is a upper bound of } S\}$$

By the definition of least upper bound, clearly α is a upper bound of S

 $\Rightarrow \alpha \in T$

Suppose if possible α is not a lower bound of T $\Rightarrow \exists a \in T$ such that $a < \alpha$ Let $\epsilon = \alpha - a > 0,$ Then by the definition $\exists b \in S$ such that $\alpha - \epsilon < b \Rightarrow a < b$ which contradicts that a is a upper bound of S $\Rightarrow \alpha$ is a lower bound of T $\therefore \alpha$ is a least element of T

3. Results and Discussion

Theorem 3.1. {*BolzanoWeierstrass theorem* }

Let $(a_n)_{n=0}^{\infty}$ be any sequence of real numbers which is bounded . Then there exists a subsequence $(a_{nk})_{k=0}^{\infty}$ of this sequence which converges to a real number.

Theorem 3.2. {Extended Bolzano Weierstrasstheorem } Let $(a_n)_{n=1}^{\infty}$ be an bounded sequence . Define the set $G = \{x \in \mathbb{R} : x < a_n \text{ for infinitely many terms } a_n\}$ Then \exists a subsequence (a_{nk}) converges to a supremum of the set G. *Proof.* Since $(a_n)_{n=1}^{\infty}$ is an bounded sequence.

 $\therefore \exists$ a real M > 0 such that $|a_n| \leq M \forall n \in \mathbb{N}$ Clearly $(-\infty, -M) \subseteq G \Rightarrow G = \emptyset$

Therefore G is an non empty bounded above subset of real numbers which is bounded above.

Hence By the completeness property of the set of real numbers we have the set G have a least upper bound let $Sup(G) = \gamma$

Let
$$k \in \mathbb{N}$$
 be arbitrary
 $\Rightarrow x \leq \gamma < \gamma + \frac{1}{k} \quad \forall \quad x \in G$

i.e. $\gamma + \frac{1}{k}$ is an upper bound of G which is strictly greater than γ

Since the supremum of a subset of a real number is the least element of the set of all the upper bound of that set (Theorem 2.2)

$$\therefore \quad \gamma + \frac{1}{k} \notin G \quad \Rightarrow \quad \gamma + \frac{1}{k} \in G^{c}$$
$$\Rightarrow \gamma + \frac{1}{k} < a_n \text{ for atmost finitely many n}$$

Therefore, For infinitely many natural numbers we have

$$\alpha + \frac{1}{k} \ge a_m \tag{1}$$

Now

For the same k, $\alpha - \frac{1}{k}$ is not an upper bound of G.

Therefore there exist an element $x \in G$ such that

$$\alpha - \frac{1}{k} < x$$

Since $x \in G$ then by the definition of G for infinitely many n \in N we have

$$\alpha - \frac{1}{k} < x < a_n \tag{2}$$

i.e there are infinitely many terms of the sequence are stictly less than $\alpha - \frac{1}{k}$ for each natural number *k*.

For each
$$k \in \mathbb{N}$$

Define
 $A_k = \{a_n : \alpha + \frac{1}{k} \ge a_n\}$
 $B_k = \{a_n : \alpha - \frac{1}{k} < a_n\}$

From (1) and (2) we have each A_k and B_k are infinite for all k $\in N$

Define

$$n_k = \min\{m : a_m \in A_k \cap B_k\}$$

Then

$$\alpha - \frac{1}{k} < a_{nk} \le \alpha + \frac{1}{k} \qquad \forall \ k \in \mathbf{N}$$

Since

$$\alpha - \frac{1}{k} \longrightarrow \alpha \qquad as \qquad k \longrightarrow \infty$$

and

$$\alpha + \frac{1}{k} \longrightarrow \alpha \qquad as \qquad k \longrightarrow \infty$$

Then by Theorem 2.1 we have

as $k \longrightarrow \infty$ $a_{nk} \rightarrow \alpha$

i.e. there exist a subsequence $(a_{nk})_{k=1}^{\infty}$ of the bounded sequence $(a_n)_{n=1}^{\infty}$ which converges to the least upper bound of *G*.

Volume 9 Issue 8, August 2020

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/SR20815190956

4. Conclusion

We have extended the Bolzano Weierstrass theorem by defining a subset of real numbers G whose supremum always exists for any bounded sequence and also there exists a subsequence which converges to that supremum.

References

- [1] Stephen Abbott. *Understanding analysis*, volume 2. Springer, 2001.
- [2] Robert G Bartle and Donald R Sherbert. *Introduction to real analysis*, volume 2. Wiley New York, 2000.
- [3] Walter Rudin et al. *Principles of mathematical analysis*, volume 3. McGraw-hill New York, 1964.

DOI: 10.21275/SR20815190956