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Abstract: In the article is considered a question of how initial data processing impacts the quality of machine learning model. As a res, 

Ukraineult of the research had been received models’ quality score when data is processed by different methods: standardization and 

scaling. The summary specifies what data process method to be used depending on the chosen machine learning model. All calculations 

were performed by the functions from Phyton libraries. 
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1. Introduction 
 

The quality of the machine-learning model determines its 

ability to solve machine learning's tasks. 

 

In [1], were identified effective methods for primary data 

processing in terms of obtaining the best values of the 

normal distribution parameters (µ = 0 and σ = 1). As a result 

of the analysis of methods: standardization, scaling, 

logarithmic transformation and Box-Cox transformation 

were concluded that: standardization and scaling are the 

most appropriate, however, how the usage of those methods 

affects the quality of the machine learning model has 

remained unexplored. 

 

Thus, there is a need to determine an effective data 

processing method, taking into consideration its impact on 

the qualitative assessment of the machine learning model. 

 

2. Goal 
 

The goal of current research is to evaluate effectiveness data 

processing methods: standardization on the basis of 

arithmetic mean and standard deviation (hereinafter 

"standardization_1"); standardization based on the median 

and interquartile range (hereinafter "standardization_2") and 

scaling taking into account their impact on the qualitative 

assessment of the machine learning model. 

 

3. Main part 

 

The research is performed on the set of data "Cervical 

cancer (Risk Factors) Data-Set" sourced from "UCI - 

Machine Learning Repository" [6]. The dataset was 

collected at „University Hospital of Caracas' in Venezuela. 

The dataset comprises demographic information, habits, and 

historic medical records of 858 patients and the indicator 

when the patient was diagnosed with cervical cancer (1- 

"diagnosed"; 0 - "not diagnosed"). The data were collected 

to build a machine learning model to predict the risk of 

cervical cancer diagnosis. 

 

In the scope of this analysis are included models: logistic 

regression, support vector classification; k-nearest 

neighbors; decision tree classifier and random forest. To 

assess the quality of the constructed models, were applied 

“F1score” measure (1), which is a balanced assessment of 

the accuracy (“Precision”) and completeness (“Recall”) of 

the constructed model [3]. 
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In formula (1) for class where “cervical cancer is not 

diagnosed” the measures: “Precision” and “Recall” to be 

calculated per formula (2-3); for class, where “cervical 

cancer is diagnosed” – per formula (4-5). 
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Formulas (2-5) include notions: TP – the number of 

correctly predicted cases when cervical cancer is not 

diagnosed; FP– the number of incorrectly predicted cases 

when cervical cancer is not diagnosed; FN- the number of 

incorrectly predicted cases when cervical cancer is 

diagnosed; TN - the number of correctly predicted cases 

when cervical cancer is diagnosed. 

 

To assess the quality of built random forest model will be 

used mean absolute error, calculated by formula (6) 
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where 

iy  - predicted value of risk of the cervical cancer diagnosis; 

ix  - real value when cervical cancer diagnosis was 

diagnosed. 

 

The research of the impact of data processing methods on 
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built machine learning model‟s quality to be conducted 

through steps: 

1) Identify in the collected data a vector of data that will be 

predicted (further Y) and input data for prediction model 

(further X); 

2) Divide sets X and Y into data to train model (further 

X_train; Y_train) and data to test model (further X_test; 

Y_test) in propotion 0.75/0.25; 

3) Scale X_train and X_test sets of data (further 

X_train_scaled and X_test_scaled) by scaling method. 

Identify values of the normal distribution parameters; 

4) Build logistic regression model based on X_train_scaled; 

Y_train; 

5) Identify a vector of predicted values (further Y_pred) 

using data for model testing - X_test_ scaled; 

6) Assess model‟s quality; 

7) Repeat steps 2-6 when data is process by 

"standardization_1" and "standardization_2"; 

8) Repeat steps 2-6 for models: support vector 

classification; k-nearest neighbors; decision tree 

classifier and random forest; 

9) Compare received models‟ quality figures for each 

method of data processing. 

The results steps 1-8 execution is proposed in tables 1-5. 

 

Table 1: Quality assessment when data is process by scaling 

method 
Model Confusion matrix F1score 

logistic regression 
TP=197 FP=2 0.99 

FN=3 TN=13 0.84 

support vector 

classification 

TP=197 FP=2 0.98 

FN=4 TN=12 0.8 

k-nearest neighbors 
TP=194 FP=5 0.97 

FN=4 TN=12 0.73 

decision tree 

classifier 

TP=193 FP=6 0.98 

FN=1 TN=15 0.81 

 

Table 2: Quality assessment when data is process by 

"standardization_1" method 
Model Confusion matrix F1score 

logistic regression 
TP=193 FP=6 0.98 

FN=1 TN=15 0.81 

support vector 

classification 

TP=195 FP=5 0.97 

FN=6 TN=10 0.65 

k-nearest neighbors 
TP=194 FP=5 0.97 

FN=7 TN=9 0.60 

decision tree 

classifier 

TP=193 FP=6 0.98 

FN=1 TN=15 0.81 

 

Table 3: Quality assessment when data is process by 

"standardization_2" method 
Model Confusion matrix F1score 

logistic regression 
TP=197 FP=2 0.99 

FN=3 TN=13 0.84 

support vector 

classification 

TP=194 FP=5 0.97 

FN=5 TN=11 0.69 

k-nearest neighbors 
TP=194 FP=5 0.97 

FN=5 TN=11 0.69 

decision tree 

classifier 

TP=193 FP=6 0.98 

FN=1 TN=15 0.81 

 

To estimate the impact of data processing on machine 

learning model‟s quality collect received values of F1score 

measure and mean absolute error in table 4. Received values 

of normal distribution parameters are presented in table 5. 

Values of F1score measure 
 

Table 4: Values of F1score measure and mean absolute error 

Data process method scaling 
"standardization

_1" 

"standardization

_2" 

Machine learning 

model 
F1-score 

logistic regression 0.84 0.81 0.84 

support vector 

classification 
0.8 0.65 0.69 

k-nearest neighbors 0.73 0.6 0.69 

decision tree classifier 0.81 0.81 0.81 

 MAE 

Randomforest 0.059 0.059 0.059 

 
Table 5: Values of the normal distribution parameters after 

data is scaled 

Data process method µ σ 

scaling 0.05 0.18 

"standardization_1" 0 1 

"standardization_2" 0.05 0.32 

 

4. Conclusion 
 

The figures from table 5 obviously presents that the best 

normal distribution parameters had been received for 

method "standardization_1", however, for that methods are 

received the worst value of F1score measure (referring to 

table 4), which means, method "standardization_1" has the 

most negative impact on machine model‟s quality among 

methods included in current research. 

 

Slightly worse distribution parameters correspond to the 

method “standardization_2” but it‟s negative impact on 

quality assessment for models: support vector classification, 

k-nearest neighbors is also visible. 

 

The scaling method has the least negative impact on the 

models‟ quality assessments while the values of the normal 

distribution parameters are inferior to the corresponding 

parameters received when data processed by methods 

"standardization_1" and "standardization_2". 

 

Important to notice, that data processing methods included 

in current research have no impact on quality of the models: 

decision tree classifier and Random forest. 

 

So, based on figures form table4 and table 5 can be 

concluded the following: when building machine learning 

models: decision tree classifier and Random forest the 

choice of method "standardization_1" will guarantee the best 

normal distribution parameters. 

 

When logistic regression is used then method 

"standardization_1" can be preferred but for models: support 

vector classification and k-nearest neighbors, it is necessary 

to use the scaling method to prevent deterioration of the 

model results. 
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