Komatiite from Eastern Iron Ore Group, Singhbhum Craton, India: Implication for Mantle Plume - Arc Tectonic Setting

Pawan Kumar Yadav¹, Manorama Das²

¹²-Geological Survey of India, SU: Bihar, Lohia Nagar, Kankarbagh, Patna – 800020, India

Abstract: In this paper, the field, petrographic and geochemical data of Patka komatiite belonging to the Badampahar Group of rocks in the Badampahar - Gorumahisani Greenstone Belt of the eastern Iron Ore Group of the Singhbhum Craton are presented for the first time which is mapped to the south of Patka village, Jharkhand. It is showing a similar history of sedimentation and volcanism in other contemporary Archaean greenstone belts of the world. Komatiites recently reported in some of them may hold key to the understanding of the early history of the evolution of the craton. The komatiite body (~600 m X ~250 m) trending N10°W - S10°E shows the concordant relationship with phyllites, amphibolite, and metachert which is underlain by phyllites, talc-tremolite-serpentinite schist, and amphibolite and is overlain by metachert and quartzite. Spinifex, platy, and cumulate zones have been recorded in these komatiites. Petrographic study reveals that these komatiites contain tremolite, serpentine, magnetite, chlorite, and talc besides glass and rare skeletal olivine, clinopyroxene, and orthopyroxene. Alteration of the primary mineralogy (olivine and pyroxene) and relict glass to tremolite, serpentine, magnetite, chlorite, and talc is also observed. The igneous mineralogy has been altered during post-magmatic hydrothermal alteration processes corresponding metamorphism under greenschist to lower amphibolite facies. These komatiites are quit enriched in SiO₂: 37.56 - 42.79 wt. %, MgO: 24.78 - 33.36 wt. %, TiO₂: 0.18 - 0.49 wt. %, Al₂O₃/TiO₂: 8 - 30 and CaO/Al₂O₃: 0.49 - 1.79 and their Al₂O₃ contents (3.25 - 6.24 wt. %), (Gd/Yb)₉₀ > 1.0, CaO/Al₂O₃ > 1.0, Al₂O₃/TiO₂ mostly < 18) and lowerREE and flat HREE fractionation patterns are comparable with those of the AI-depleted komatiites. In the Nb/Th vs. Zr/Nb diagram, these komatiites cluster away from the other volcanics, and in the Nb/Y vs. Zr/Y diagram they cluster between deep depleted mantle (DEP) and primitive mantle (PM). Bivariate plots of (Gd/Yb)₉₀ vs. CaO/Al₂O₃ and Al₂O₃/TiO₂ imply varying degrees of involvement of garnet in the generation of komatiite melt in the mantle. The observed chemical characteristics indicate derivation of the komatiite magmas from different depths in a plume setting, whereas sub-contemporaneous felsic volcanism and TTG accretion can be attributed to an arc setting. In order to explain, the spatial association of komatiite volcanism with contemporaneous mafic-felsic volcanism and TTG accretion, we propose a combined mantle plume - arc setting with moderate contamination by continental crust or sub-contontinental lithosphere.

Keywords: Komatiite, Geodynamic setting, Whole rock geochemistry, Badampahar-Gorumahisani greenstone belt (BGGB), Singhbhum Craton, India

1. Introduction

Komatiites, first identified by Viljoen & Viljoen (1969a) within the famous 3.5 Ga old Archaean greenstone belt of Barberton (Kaapvaal craton, South Africa) from their type locality along the Komati River. Komatiites are high-MgO (>18%), extrusive and ultramafic rocks (Arndt and Nisbet, 1982; Le Bas, 2000) which are mostly found in Archaean setup and rare or absent in the Proterozoic and Phanerozoic terrains. They form significant constituents of Archaean crust and are provided information key to the understanding of the composition and melting processes that operated in deep Archaean mantle, continental growth rates, secondary processes such as metamorphism and fluid-induced alteration, geodynamic processes and crustal growth patterns. Detailed studies of komatiites have been done in the last four decades from several Archaean greenstone belts viz. Barberton, Commandone, South Africa; Sargur and Badampahar-Gorumahisani, India; Ball, Canada; Munro and Tisdale, Canada which have mainly been reported from different parts of the world like South Africa, Canada, Australia, Brazil, Finland, North China and India (Jahn et al., 1982; Gruau et al., 1987; Wilson and Carlson, 1989; Arndt, 1994, 2008; Lesher and Arndt, 1995; Xie et al., 1993, 2012; Bhattacharya et al.,1996; Arndt et al., 1997; De Wit and Ashwal, 1997; Fan and Kerrich, 1997; Grove et al., 1997; Parman et al., 1997; Sylvester et al., 1997; Kerrich et al., 1999; Polat et al., 1999; Sahu and Mukherjee., 2001; Chavagnac, 2004; Raul Minas and Jost, 2006; Jayananda et al., 2008; Bose, 2009; Zhai and Santosh, 2011; Dostal and Mueller, 2012; Furnes et al., 2012; Mazumder et al., 2012a, b; Tushipokla and Jayananda, 2013; Chaudhuri et al., 2015, 2017; Yadav et al., 2015; Yadav et al., 2016; Yadav and Das, 2017a, b).

Speculation about geodynamics in greenstone belts of Archaean and Proterozoic was tricky as tectonic processes and crust-mantle interaction of Archean was markedly different from the present and is still a topic of discussion of the geodynamic context of komatiite magma generation and eruption. Several models regarding the genesis and geodynamic setting of the komatiite magma have been proposed by many workers, as to whether they are related to melt derivation at great depth by a high degree (~30%) of melting caused by mantle plumes (Ohtani et al., 1989; Nisbet et al., 1993; Boehler et al., 1995; Herzberg, 1995, 1999; Arndt et al., 1997; Arndt, 2003; Kerrich and Xie, 2002; Arndt et al., 2008), partial melting of peridotite (Allegre, 1982; Arndt et al., 1998), an oceanic plateau originated from mantle plume (Kerr et al., 1996; Polat and Kerrich, 2000), melting of shallow / deep mantle (Grove et al., 1997; Parman et al., 1997, 2001; Polat et al., 1999; Arndt, 2003; Chavagnac, 2004; Berry et al., 2008) and a combined mantle plume-island arc environment (Puchtel et al., 1999)
or a subduction zone (Parman et al., 1997, 2001; Grove et al., 1999; Grove and Farman, 2004).

In the Indian subcontinent, komatiites are predominantly reported from the Archaean Sargur, Holensipur and Chitradurga schist belts of the Dharwar craton, southern India (Viswanatha et al., 1977; Hussain and Naqvi, 1983; Srikanthia and Bose, 1985; Radhakrishna and Naqvi, 1986; Charan et al., 1988; Venkatadasu et al., 1991; Devapriyan et al., 1994; Subba Rao and Naqvi, 1999; Jayananda et al., 2008; Tushipokla and Jayananda, 2013). In the Singhbhum Craton, occurrences of komatiites are mainly reported in the eastern Iron Ore Group (Bhattacharya et al., 1996; Sahu and Mukherjee, 2001; Bose, 2009; Chaudhuri et al., 2015, 2017; Yadav et al., 2015, 2016; Yadav et al., 2017a, b). In this contribution, field, petrographic, and whole-rock geochemical data are presented on the Patka komatiite of the BGG and discuss their implication on the post-magmatic alteration processes, crustal contamination besides drawing hypothesis on possible geodynamic setting and composition of the mantle source.

Geological setting of the Singhbhum Craton and the area of study

The Geological setting of the area of study is mainly discussed into two parts i.e. (i) Iron Ore Group Supracrustals: their stratigraphic status and (ii) Badampahar - Gorumahisani greenstone belt (BGGB) which belongs to the Singhbhum Craton. The Singhbhum Craton (SC) is a polycyclic Archaean crustal block of Palaeo - Mesaoarchean age which is bordered by Chhotanagpur Gneissic Complex to the north, Bastar Craton to west, Eastern Ghats Mobile Belt to the south and vast tract of alluvium to the east and is covering an area of about 10,000 km² (Fig.1). The supracrustals of the Older Metamorphic Group (OMG), the oldest member of the SC, consisting of pelitic schist, arenite, para, and ortho- amphibolites are dated ~3.5 - 3.6 Ga (Saha, 1994; Misra et al., 1999; Mukhopadhyay, 2001; Misra, 2006). The OMG is intruded by Older Metamorphic Tonalite Gneiss (OMTG) which represents the first stable continental crust, is dated around 3.44 Ga (Goswami et al., 1995; Acharyya et al., 2010). Both the OMG and OMTG are intruded by an early phase of Singhbhum Granitoid which consists of five distinct plutons emplaced around 3.3 Ga (Misra et al., 1999). Tait et al. (2011), Upadhyay et al. (2014), and Nelson et al. (2014) offer new-age data on various lithocomponents of the Singhbhum craton. Supracrustals of the Iron Ore Group (IOG) is represented by low-grade volcano-sedimentary successions comprising meta-volcanics, felsic and intermediate volcanics (Yadav and Das, 2019a; Yadav et al., 2020), ultramafics, spinifex textured peridotitic komatiite (Yadav et al., 2015, 2016; Chaudhuri et al., 2015, 2017; Yadav and Das, 2017a, b), quartz-pebble conglomerate (Yadav et al., 2016; Yadav and Das, 2017c, 2019b) quartzites, banded iron formation, metachert with minor carbonate rocks which occur as three detached belts along the periphery of the nucleus viz. Noamundi - Jamda - Koiri belt (NJK belt), the western IOG; the southern IOG, Tomka - Daitari belt (TD belt), and the eastern IOG, the Badampahar - Gorumahisani belt (BG belt; Fig.1). The age relation between the three belts is not yet resolved and is a subject of debate. The relation between the IOG, OMG, OMTG, and the Singhbhum Granite is far from clear as can be construed from discussions in publications by Nelson et al., 2014 and Upadhyay et al., 2014.

(i) Iron Ore Group Supracrustals: their stratigraphic status

Some workers consider the IOG belts peripheral to the Singhbhum cratonic nucleus to be coeval, while others consider these to be of different ages (Saha, 1994). Many would agree the BGG belt extending southwards up to Hadgarh to be relatively the older amongst the three and some would even argue that this may be coeval with OMG supracrustals. Mukhopadhyay et al. (2008) consider the IOG greenstone sequence of the Tomka - Daitari belt as ~3.5 Ga old based on SHRIMP data on dacite occurring at its base. Volcano-sedimentary sequence in the Malayagiri basin is also considered as the equivalent of the IOG (Saha, 1994). Igneous crystallisation date of 2806±6 Ma from the dactitic tuff of the Malayagiri IOG basin, south of Palalahara was reported by Nelson et al., 2014 and they attributed that the sedimentary rocks of the IOG were deposited within different basins over an 800 million years interval. They also described a 5 stage-model of the evolution of the craton to account for the conflicting range of deposition ages so far obtained for the Iron Ore Group sedimentary rocks within the different basins. According to them, (a) the OMTG tonalites were emplaced between 3530 to 3300 Ma during the Stage 1 and were transformed into tonalite gneisses during Stage 2 at c. 3325 to 3300 Ma, (b) basalts, dacites and banded iron-formations deposited onto OMTG tonalite basement at c. 3507 Ma are now preserved within the southern (Tomka-Daitari) basin, (c) undeformed and unmetamorphosed OSG sedimentary rocks were preserved (as IOG cycle 1) around the margins of the newly-cratonised basement, (d) BIF and clastic sedimentary rocks were deposited around the margins of the craton onto the older sedimentary rocks and adjacent gneissic basement until c. 3.1 Ga (e) differentiated granitic rocks were emplaced during Stage 4, between 3.1 and 3.0 Ga, (f) sedimentary and volcanic rocks were deposited within the Malayagiri basin at 2.8 Ga, during Stage 5. Based on the above data, they interpreted that the sedimentary rocks of the eastern Iron Group i.e. Badampahar-Gorumahisani greenstone belt and lower part of the western Iron Group (Bonai-Keonjhar greenstone belt) were deposited simultaneously with those of the southern (Tomka-Daitari) basin, at 3507 Ma.

Upadhyay et al., 2014 also conclude a polycyclic evolution of the Paleo to Meso-Archean crust of the Singhbhum craton. According to them, the supracrustal rocks representing the IOG greenstone successions are older or of similar age as the OMTG and the Singhbhum Granite (SG) and arguments that the OMTG or the SG served as the basement for deposition of the IOG are untenable. They opine that the IOG greenstone sequences must have formed over an older crustal nucleus which is no longer preserved but the 3.61 Ga inherited zircons are the only possible remnants of this earlier crust. The petrology and geochemistry of mafic-ultramafic volcanics which constitute a significant component of the IOG supracrustals have been reviewed by Bose (2009). Komatiites have been reported from the Badampahar-Gorumahisani greenstone belt by Bhattacharya et al., 1996; Sahu and Mukherjee, 2001; Bose, 2009; Chaudhuri et al., 2015, 2017; Yadav et al., 2015,
2016; Yadav and Das, 2017a, b. In this context, the known occurrences of komatiites confined only to the BG greenstone belt out of all the IOG belts could be a feature significant enough to help decipher the evolution of the Singhbhum Craton.

(ii) Badampahar - Gorumahisani greenstone belt (BGGB)
The Badampahar - Gorumahisani greenstone belt (BGGB) of the IOG which extends from Rajnagar in south Singhbhum district, Jharkhand to the south of Jashipur in Mayurbhanj district, Odisha is disposed in the form of a 120 km long narrow arc (Jena and Behera, 1998). The northern 70 km stretch from Rajnagar up to Rairangapur has an NW - SE trend and the southern 50 km stretch trends NNE - SSW up to Jashipur. It has an average width of about 4 km attaining maximum width of 10 km in the Rairangapur - Bisoi sector. The BGGB has been assigned different stratigraphic nomenclature by different workers. It was designated as the Iron Ore Stage by Dunn, 1929; the Iron Ore Series by Jones, 1934; the Iron Ore Group by Sarkar and Saha, 1977 and Banerjee (1974) classified it as the Gorumahisani Group. Iyenger and Murthy (1982) designated the rocks of the belt as Badampahar Group and they suggested that together with the Koira Group forms the Iron Ore Supergroup. The BGGB classified under the Badampahar Group is mainly constituted of basic metavolcanics, small and narrow bodies of meta-ultramafites, acid metavolcanics (ryodacite), and chemogenic metasediments including minor terrigenous components. BIF in form of banded magnetite quartzite (BMQ) is a conspicuous member in the southern part of the belt, where 2 - 3 bands of BMQ associated with supergene iron ores is exposed over a strike length of over 15 km in a linear tract from near Sulaipat in the NE to Badampahar and beyond in the SW. Metamorphosed basalt exhibits pillow structure at many places, especially in SE of Madansila and Hatia in the central part of the belt (Jena and Mohanty, 1989; Yadav et al., 2015). Variolitic structure appears in Kharkai River section and amygdular metabasalt with vesicles is preserved at a few places near Hatia and the western contact with granite in the Gorumahisani sector (Yadav et al., 2015). All these features indicate dominantly submarine volcanism with subaerial effusion (Sahoo et al., 2010). Locally exposed amphibolite, hornblende schist, chlorite schist, and phyllite are always confined to the marginal parts of the belt. Spinifex textured periidotitic komatiite (STPK), serpentinite, metapyroxenite and talc-tremolite-serpentine schist belongs to the meta-ultramafites. Volcanic agglomerates comprising platy fragments of basalt welded in tuffaceous material of acidic composition occur in the Gorumahisani hill.

Figure 1: Generalized geological map of the Singhbhum Craton, north Odisha showing location of the study area (modified after Saha, 1994)

Volume 9 Issue 8, August 2020

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
Geology of the study area
A small body of komatiite was recorded towards the south of Patka, Jharkhand (22º36′40″ N: 86º13′34″ E, arrow Fig. 2). This segment of the BGG belt comprises a lithopackage of mafic-ultramafic rocks and the associated metasediments. The komatiite body (~600 m X ~250 m) trending N10ºW-S10ºE shows the concordant relationship with phyllites, amphibolite, and metachert. This komatiite is underlain by phyllites (Fig. 3a), talc-tremolite-serpentine schist, and amphibolite and is overlain by metachert (Fig. 3b) and quartzite. Patka komatiite display well preserved random spinifex zone (Fig. 3c & d), platy zone (Fig. 3e), and a well-developed cumulate zone (Fig. 3f). A common and distinctive texture of komatiite is known as spinifex texture which is defined by the criss-cross arrangement of olivine needles which are altered to serpentine, magnetite, chlorite, and tremolite. In this zone, the size of olivine needles varies from 5 mm to 5 cm in length and 2 mm to 5 mm in width respectively (Fig. 3c & d). In the platy zone, olivine plate size varies from 5 cm to 20 cm in length and 2 mm to 1 cm in width respectively (Fig. 3e). The very fine-grained groundmass of talc, chlorite, tremolite, serpentine and secondary magnetite is mostly occupied by the triangular and rectangular interspaces of the needles. At places, thin vein-lets of serpentine and cooling cracks are observed in the cumulate zone (Fig. 3f) and are also noticed in this komatiite. Olivine is replaced by serpentine, secondary magnetite, and talc, and pyroxenes are altered to tremolite, actinolite, chlorite, and epidote which indicate the assemblage of greenschist to lower amphibolite facies.

Figure 2: Geological map of the study area showing the occurrence of komatiite near Patka in the toposheet no. 73J/2 (available on www.gsi.gov.in).
Petrography of komatiite

The studied komatiites show diverse petrographic characteristics in texture, primary mineralogy, and alteration features. They have been affected by greenschist to lower amphibolite facies of metamorphism. Komatiites are described for two distinct modes of occurrences viz. spinifex zone and cumulate zone in terms of mineralogy and texture under the optical microscope.

Komatiites show spectacular textures known as ‘spinifex textures’ which are defined by parallel or randomly oriented grouping of large skeletal plates of olivine crystals ranging from millimetres to centimetres and are embedded in a fine-grained groundmass of clinopyroxene, magnetite, and glass. The texture is explained by a magmatic quench crystallization effect promoted by the rapid cooling of melt with low nucleation rate and high growth rate of crystals at a large degree of supercooling. The zone exhibits both random (Fig. 4a & b) and platy spinifex (Fig. 4c & d) character. Olivine needles of random spinifex zone vary in size ranging from 10 mm to 15 cm in length and 1 mm to 5 mm in width respectively (Fig. 4a). Plates of olivine and clinopyroxenes in platy spinifex zone vary in length and width from 30 cm to 50 cm and 10 cm to 20 cm.

Figure 3: (a) Foliation of phyllite is deformed and forms pucker folds. (b) Black metachert shows one set of prominent foliation. (c & d) Random spinifex zone displaying network of randomly orientated olivine needles. (e) Platy spinifex zone consists of parallel arrangement of olivine and pyroxene plates. (f) Thin veinlets of serpentine are noticed in cumulate zone.
respectively (Fig. 4c & d). The primary minerals like olivine and pyroxenes are mostly replaced by secondary minerals viz. serpentine, magnetite, chlorite, talc and tremolite. Out of the secondary phases, tremolite (>65 vol. %) is the most abundant mineral of this zone (Fig. 4b), followed by serpentine, magnetite, chlorite, and talc. Secondary magnetite is formed due to the breakdown of olivine and mostly occurs within the plates of olivine in feather-like shapes (Fig. 4a & c). The matrix of the spinifex zone is mostly formed by the anhedral shape of minerals like chlorite, serpentine, magnetite, and glass. The cumulate zone includes mainly tremolite, serpentine, olivine, augite, and enstatite as essential minerals. Magnetite, chlorite, and talc occur as accessories. It consists of pseudomorphic olivine replaced by serpentine (antigorite) and talc (Fig. 4e & f). The cumulate texture is defined by olivine pseudomorphs replaced by serpentine (antigorite) and secondary magnetite (Fig. 4e), whereas, inter-cumulus space is occupied by tremolite, serpentine and secondary magnetite (Fig. 4e). The relict grains of olivine are still preserved within the felted mass of serpentine and magnetite forming a mesh texture (Fig. 4e & f).

Figure 4: (a to d) Photomicrographs of spinifex zone. (a) Criss-cross arrangement of serpentine and tremolite needles (b) Needles of tremolite shows randomly orientations. (c) Large olivine plates are replaced by serpentine and secondary magnetite (d) Plates of pyroxenes (clinopyroxenes) are altered to tremolite and magnetite. (e) Cumulate zone shows cumulus (Olv) and inter-cumulus (Tre) textures. (f) Cumulate zone displaying relict grains of olivine, serpentine and magnetite forming mesh texture. **Abbreviations:** Olv, Olivine; Serp, Serpentine; Mt, Magnetite; Tre, Tremolite; Cpx, Clinopyroxene; Chl, Chlorite; Tlc, Talc.
Analytical techniques
Fourteen nos. of representative samples of komatiites from the from Badampahar - Gorumahisani greenstone belt, Singhbhum Craton were analysed for major-element oxides by X-ray Fluorescence (XRF) technique and trace elements and REE were analysed by Inductively Coupled Plasma Mass Spectrometer (ICP-MS) at the Eastern Region Laboratory, Kolkata, India. The analytical data is furnished in Table - 1.

2. Results and Discussion

Geochemical characteristics of komatiite
Patka samples are showing komatiitic in composition, with MgO content ranging from 24.78 to 28.61 wt. % in the spinifex zone and 30.84 - 33.36 wt. % in the cumulus zone. The range of the SiO₂ contents in the komatiite samples varies from 37.56 to 42.79 wt. % The Al₂O₃/TiO₂ ratio which varies from 8.65 to 30.47 in the spinifex zone and from 9.18 to 24.56 in the cumulus zone. Beside, Ca-rich character indicated from the CaO/Al₂O₃ ratio (0.49 - 1.79) is very similar to that of the Al-depleted Barberton type komatiites (Viljoen and Viljoen, 1969a; Nesbitt et al., 1979, 1982; Jahn et al., 1982; Bickle et al., 1993; Lahaye and Arndt, 1996; Arndt et al., 2008). The presence of mainly hydrous minerals like tremolite, serpentine, talc, and chlorite is noticed in this unit which is attributed to a large variation in LOI wt. % ranging from 5.05 to 10.45 wt. %.

Arndt and Nisbet, 1982 proposed a diagram based on MgO contents which show the distinction between komatiites and komatiitic basalt. The analysed samples are plotted in the triangular diagram of CaO-MgO-Al₂O₃ in which all samples are classified as komatiites (Fig. 5). In the binary variation diagrams of major elements oxides, a moderate to strong negative correlation has been observed in MgO versus SiO₂, Al₂O₃, Fe₂O₃, Na₂O, and K₂O. Plots of CaO and LOI show positive correlation and TiO₂ reveals scattering. Expectedly, LOI displays a strong positive correlation with MgO, possibly a mark of susceptibility to alteration of Mg-Ca-rich minerals to secondary hydrous phases (Fig. 6). The trace element of komatiite samples shows significant contrast mainly in the Ni content of the spinifex zone ranging from 853 to 1482 ppm and cumulate zone varying from 1127 to 1617 ppm respectively. Spinifex zone shows a slightly higher value of Cr (1839 - 3988 ppm) than the cumulate zone (1529 - 3250 ppm). The plot of Ni displays a strong positive correlation with MgO suggesting olivine fractionation (Arndt et al., 2008). Plots of Cr, Sc, V, and Zr reveal a moderate negative correlation with MgO and Co, Rb, and Y display scattering (Fig. 7). Komatiites are enriched in LREE than HREE and the value of 𝑆𝑖𝐸𝑥 in Figure varies from 7.45 to 55.32 ppm. Chondrite normalised REE fractionation patterns (Fig. 8a) reveal a slight enrichment of LREE compared with HREE anomalies (Nakamura, 1974; Table 1) and it shows wide variation in ratios of (La/Sm)N, (0.65 - 3.2) and of (Gd/Yb)N, (0.73 - 1.59). In primitive mantle-normalised multi-element spider diagram, komatiites show relative enrichment of U, Pb, and Y and depletion in Ba, Sr, and Zr values (Fig. 8b). Major element ratios such as CaO/Al₂O₃ and Al₂O₃/TiO₂ in combination with (Gd/Yb)N values have been used to understand the nature of mantle source and garnet fractionation (Jahn et al., 1982; Cattell and Arndt, 1987; Gruau et al., 1987; Ohtani et al., 1989; Xie et al., 1993). Most of the (Gd/Yb)N versus CaO/Al₂O₃ and Al₂O₃/TiO₂ plots fall in the field of ‘Garnet Fractionation’ (Fig. 8c & d; Jahn et al., 1982; Arndt, 2003).

Table 1: Major elements (wt. %) and trace elements (ppm) data of komatiites from Badampahar - Gorumahisani greenstone belt, Singhbhum Craton

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>LK-1</th>
<th>LK-2</th>
<th>LK-3</th>
<th>LK-4</th>
<th>LK-5</th>
<th>LK-6</th>
<th>LK-7</th>
<th>LK-8</th>
<th>LK-9</th>
<th>LK-10</th>
<th>LK-11</th>
<th>LK-12</th>
<th>LK-13</th>
<th>LK-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>39.41</td>
<td>42.06</td>
<td>39.49</td>
<td>40.79</td>
<td>42.17</td>
<td>40.91</td>
<td>37.56</td>
<td>42.79</td>
<td>40.09</td>
<td>38.98</td>
<td>39.19</td>
<td>41.38</td>
<td>41.67</td>
<td>38.81</td>
</tr>
<tr>
<td>MnO</td>
<td>0.22</td>
<td>0.26</td>
<td>0.22</td>
<td>0.13</td>
<td>0.19</td>
<td>0.20</td>
<td>0.17</td>
<td>0.21</td>
<td>0.18</td>
<td>0.18</td>
<td>0.21</td>
<td>0.15</td>
<td>0.14</td>
<td>0.19</td>
</tr>
<tr>
<td>MgO</td>
<td>31.55</td>
<td>26.52</td>
<td>26.15</td>
<td>33.36</td>
<td>31.56</td>
<td>26.78</td>
<td>27.65</td>
<td>25.72</td>
<td>27.93</td>
<td>24.78</td>
<td>26.57</td>
<td>33.20</td>
<td>28.61</td>
<td>30.84</td>
</tr>
<tr>
<td>CaO</td>
<td>4.05</td>
<td>7.08</td>
<td>7.11</td>
<td>4.96</td>
<td>3.80</td>
<td>4.82</td>
<td>4.06</td>
<td>7.34</td>
<td>4.34</td>
<td>4.10</td>
<td>3.81</td>
<td>3.58</td>
<td>5.31</td>
<td>6.03</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.03</td>
<td>0.31</td>
<td>0.23</td>
<td>0.13</td>
<td>0.06</td>
<td>0.22</td>
<td>0.18</td>
<td>0.25</td>
<td>0.24</td>
<td>0.26</td>
<td>0.24</td>
<td>0.26</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.39</td>
<td>0.24</td>
<td>0.46</td>
<td>0.18</td>
<td>0.20</td>
<td>0.44</td>
<td>0.49</td>
<td>0.21</td>
<td>0.47</td>
<td>0.53</td>
<td>0.45</td>
<td>0.16</td>
<td>0.24</td>
<td>0.27</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.10</td>
<td>0.35</td>
<td>0.01</td>
<td>0.25</td>
<td>0.31</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>LOI</td>
<td>8.43</td>
<td>5.05</td>
<td>5.68</td>
<td>9.12</td>
<td>8.22</td>
<td>6.50</td>
<td>7.03</td>
<td>6.62</td>
<td>5.38</td>
<td>6.52</td>
<td>8.89</td>
<td>9.09</td>
<td>10.45</td>
<td>7.9</td>
</tr>
<tr>
<td>Total</td>
<td>100.09</td>
<td>99.48</td>
<td>99.16</td>
<td>100.66</td>
<td>100.10</td>
<td>100.04</td>
<td>100.01</td>
<td>99.96</td>
<td>100.31</td>
<td>100.10</td>
<td>100.10</td>
<td>100.10</td>
<td>100.10</td>
<td>100.10</td>
</tr>
<tr>
<td>Ba</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td><20</td>
<td>73</td>
<td>49</td>
<td>58</td>
<td>20</td>
<td>95</td>
<td>21</td>
<td>115</td>
<td>55</td>
<td>74</td>
<td>16</td>
</tr>
<tr>
<td>Co</td>
<td>111</td>
<td>107</td>
<td>113</td>
<td>87</td>
<td>101</td>
<td>103</td>
<td>111</td>
<td>100</td>
<td>108</td>
<td>106</td>
<td>102</td>
<td>83</td>
<td>78</td>
<td>115</td>
</tr>
<tr>
<td>Cr</td>
<td>1529</td>
<td>3613</td>
<td>1839</td>
<td>2376</td>
<td>2931</td>
<td>3132</td>
<td>2955</td>
<td>3988</td>
<td>3070</td>
<td>2568</td>
<td>2514</td>
<td>3074</td>
<td>3438</td>
<td>3250</td>
</tr>
<tr>
<td>Cu</td>
<td>16</td>
<td>88</td>
<td>33</td>
<td>28</td>
<td>18</td>
<td>28</td>
<td>15</td>
<td>30</td>
<td>53</td>
<td>104</td>
<td>21</td>
<td><5</td>
<td>9</td>
<td>551</td>
</tr>
<tr>
<td>Nb</td>
<td>2.5</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Ni</td>
<td>1727</td>
<td>1122</td>
<td>1482</td>
<td>1617</td>
<td>1803</td>
<td>1026</td>
<td>953</td>
<td>1254</td>
<td>906</td>
<td>940</td>
<td>853</td>
<td>1600</td>
<td>1374</td>
<td>1127</td>
</tr>
<tr>
<td>Pb</td>
<td><5</td>
<td><5</td>
<td>6</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>6</td>
<td><5</td>
<td><5</td>
<td>5</td>
</tr>
<tr>
<td>Rb</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>3.6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Sc</td>
<td>12</td>
<td>28</td>
<td>23</td>
<td>13</td>
<td>11</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>26</td>
<td>35</td>
<td>31</td>
<td>15</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>Sr</td>
<td>31</td>
<td>65</td>
<td>43</td>
<td>41</td>
<td>16</td>
<td>9</td>
<td>18</td>
<td>59</td>
<td>16</td>
<td>17</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>Th</td>
<td>2.1</td>
<td>1.5</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2.1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>U</td>
<td>3.2</td>
<td>2</td>
<td>2.1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2.8</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>V</td>
<td>102</td>
<td>118</td>
<td>116</td>
<td>104</td>
<td>114</td>
<td>226</td>
<td>253</td>
<td>112</td>
<td>211</td>
<td>242</td>
<td>185</td>
<td>106</td>
<td>119</td>
<td>152</td>
</tr>
<tr>
<td>Y</td>
<td>12</td>
<td>12</td>
<td>15</td>
<td>9</td>
<td>11</td>
<td>16</td>
<td>28</td>
<td>11</td>
<td>21</td>
<td>24</td>
<td>13</td>
<td>9</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>
Figure 5: Plots in the CaO-MgO-Al₂O₃ diagram (Viljoen et al., 1982).
Figure 6: Plots of komatites in variation diagrams for selected major oxides plotted against MgO.

Figure 7: Variation diagrams for selected trace elements of komatites plotted with MgO.
Alteration or element mobility, metamorphism, and crustal contamination

Mobility of LILE and REE controlled by secondary processes such as induced hydrothermal alteration/element mobility and metamorphism in most Archaean komatiites of the different greenstone belts across the world has been well documented by Tourpin et al., 1991; Gruau et al., 1992 and Chavagnac, 2004. The Patka komatiites samples of BGGB comprising predominantly of tremolite, serpentine, secondary magnetite, chlorite, and talc. Development of secondary minerals like serpentine and tremolite, replacing olivine and pyroxene requires gain/loss of MgO and SiO$_2$ to the bulk rock. A negative trend is observed between these two elements in the plot indicating alteration of MgO and or SiO$_2$ by secondary processes (Fig. 6). These mineral assemblages have been attributed to the varying degree of hydrothermal alteration and indicate greenschist to lower amphibolite facies of metamorphism. Most of the analysed samples show the consistency in Al$_2$O$_3$/TiO$_2$ and (Gd/Yb)$_N$ ratios and REE fractionation patterns. Mobility of major oxides and trace elements like SiO$_2$, CaO, Fe$_2$O$_3$, Al$_2$O$_3$, Na$_2$O and TiO$_2$, and P$_2$O$_5$, TiO$_2$, Co, Rb, and Y are noticed in this rock which is attributed by the presence of smooth fractionation patterns of major-element oxides and scattering patterns of trace elements (Fig. 6 & 7). In the primitive-mantle normalised multi-element spider diagram is also displaying crisscrossing of LILE indicative of their mobility (Fig. 8b). Komatiite samples do not display any significant Ce anomalies (Fig. 8a). Several studies have been revealed that Ce anomalies occur in response to oxidation of Ce$^{3+}$ to Ce$^{4+}$ and precipitation of Ce$^{4+}$ from solution as CeO$_2$ (Braun et al., 1993). The mild positive Ce anomaly noticed in some samples could probably be related to precipitation of Ce by the circulation of fluid phase in an oxidising condition, whereas the minor Ce depletion in some others observed could be attributed to the removal of Ce by circulating fluids during metamorphism. Analysed samples display strong negative Eu anomalies, implying that most magnesium-rich rocks were vulnerable to alteration (Lecuyer et al., 1994; Fan and Kerrich, 1997). Eu anomalies were also noticed in komatiites of the other cratons, which are generally attributed to secondary alteration (Sun and Nesbitt, 1978; Ludden et al., 1982; Arndt, 1994). Although the majority of the studied komatiites do not exhibit LREE enrichment and absence of Nb anomalies generally indicative of the absence of significant crustal contamination. Zr/Th, Nb/Th, Nb/U, Zr/Nb, and Nb/La ratios (Table 1) and strong positive U, Pb, and Y anomalies are attributed to some degree of crustal contamination (Fig. 8b).

Magmatic fractionation of trace elements

The komatiites show moderate to strong linear trends in binary diagrams (see Fig. 6 & 7) which is indicating that...
the source magmas evolved by differentiation processes. The positive correlation of MgO with Ni (Fig. 7) suggests that primary MgO contents were largely controlled by fractionation or accumulation of olivine. Negative trends of SiO₂, Al₂O₃, Fe₂O₃, Na₂O, Cr, Sc, V, and Zr with MgO indicate the possible involvement of olivine fractionation and garnet as a fractionating phase (Fig. 6 & 7). The majority of komatiite samples exhibits chondritic to sub-chondritic REE (7.45 - 55.32 ppm) patterns indicating their derivation from a depleted mantle source. The nature of sources and composition of melt residues have been identified by using the anomalies of Zr, Hf, and Y (Xie et al., 1993; Fan and Kerrich, 1997; Polat et al., 1999). Lahaye et al., 1995 and Polat et al., 1999 proposed that the Al-depleted komatiites from the Barberton greenstone belt have to be derived from the deep mantle melt segregation in a plume with residual majorite garnet at depths of 400 km based on strong negative Zr and Hf anomalies. Nb-anomalies on the primitive mantle normalised multi-element spider diagram has been used to characterise different mantle sources and also used as powerful tectonic discriminators between plume and arc settings (Jochum et al., 1991; Puchtel et al., 1997). Positive Nb-anomalies may suggest their derivation from the plume source that contains recycled slab material at greatest mantle depths (Kerrich and Xie, 2002). Polat and Kerrich, 2000 attributed that the negative Nb-anomalies reflect the generation of magma in arc environments or by crustal contamination processes. None of the samples of komatiite are showing anomalies of Nb while plotting in the primitive mantle normalised multi-element spider diagram (Fig. 8b) which is indicated that komatiite might be derived from a deep mantle plume source probably containing recycled slab component. The observed range of (Gd/Yb)₃N values, Zr and Y anomalies, and relatively flat HREE patterns reveals reflecting the magma generation at different depths melt generation at different depths (∼250 - 350 km) in the mantle with or without the involvement of residual garnet.

Al-depletion and garnet fractionation
Nesbitt and Sun, 1976 and Sun, 1984 identified two main types of komatiites based on major oxides contents i.e. Al-depleted (Barberton komatiite) and Al-undepleted (Munro komatiite). Later on, Arndt, 2003 and Arndt et al., 2008 proposed a new classification for the komatiites: (i) the Barberton-type komatiites characterised by high CaO/Al₂O₃ (>1.0), low Al₂O₃/TiO₂ (<16) and depleted HREE; (ii) the Munro-type komatiites with lower CaO/Al₂O₃ (<1.0), higher Al₂O₃/TiO₂ (>20) and HREE; and (iii) the Gorgana-type komatiites with high Al₂O₃/TiO₂. Late Archaean to Proterozoic komatiites have Al₂O₃/TiO₂ ratios of around 20 (Arndt et al., 2008; Robin-Popiel et al., 2012), a value was close to the chondritic value and distinctly higher than that of the rocks of the Barberton greenstone belt (Nesbitt and Sun, 1976; Sun and Nesbitt, 1978; Nesbitt et al., 1979). The genesis of Al-depleted komatiite (Barberton-type komatiite) is attributed by the presence of garnet in the melt phase at a deeper level of the mantle (Jahn et al., 1982; Cattell and Arndt, 1987; Gruau et al., 1987; Xie et al., 1993; Arndt, 2003). A high degree of peridotite melting (∼50%) at shallower level is inferred the generation of Al-undepleted Munro type komatiites, where the mantle source intersected the solidus and garnet was removed from the residue before the melt acquired komatiitic composition. As per the experimental studies have been carried out by Ohtani et al. (1989) and Herzberg, (1999), the major element composition of Al-depleted komatiite melt is generated by partial melting of peridotite at pressures >8 GPa, whereas Al-undepleted komatiites formed during high degree melting of mantle peridotite at a shallow level. The ratios of CaO/Al₂O₃ and (Gd/Yb)₉₀ values have been used by Jahn et al., 1982 and Gruau et al., 1992 for the identification of garnet source in the melt phase. Presence of garnet as a residual phase in the mantle is supported by High CaO/Al₂O₃ (>1.0) and (Gd/Yb)₉₀ >1.0 and low CaO/Al₂O₃ (<1.0) and (Gd/Yb)₉₀ <1.0 indicative of garnet entering into the melt phase. Patka komatiite samples are characterised by Al-depleted with high CaO/Al₂O₃ ratios (>1.0), Al₂O₃/TiO₂ (8.65 - 30.47), and (Gd/Yb)₉₀ >1.0 suggesting the involvement of garnet as a residual phase. The ratios of CaO/Al₂O₃ > 1 are observed in those samples having high MgO contents (>30 wt. %) whereas samples with low MgO contents (<30 wt. %) have low CaO/Al₂O₃ ratios <1 (Table 1). Jahn et al., 1982 and Arndt, 2003 used the major element ratios such as CaO/Al₂O₃ and Al₂O₃/TiO₂ in combination with (Gd/Yb)₉₀ to identify the nature of mantle sources and garnet fractionation. In this study bivariate plots of (Gd/Yb)₉₀ versus CaO/Al₂O₃ and Al₂O₃/TiO₂ imply varying degrees of involvement of garnet in the generation of komatiite melt in the mantle (Fig. 8c & 8d).

Speculation on the possible tectonic setting and genesis of komatiite
The geodynamic context of komatiite magma generation and eruption has been a debated topic during the last four decades. The various concept has been proposed for the origin of komatiite magma includes: (i) they are related to mantle plume (Ohtani et al., 1989; Arndt et al., 1997; Kerrich and Xie, 2002; Arndt, 2003), (ii) genesis in oceanic plateaus originated from mantle plume (Kerr et al., 1996; Polat and Kerrich, 2000), (iii) formed in combined plume-arc setting (Puchtel et al., 1999; Jayananda et al., 2008) and (iv) genesis in subduction zone setting (Parman et al., 1997, 2001; Grove et al., 1999). Lateral accretion of crust in the subduction zone context is to be considered as a major process for the formation of Tonalite-trondhjemite-granodiorite (TTG) crust in the Archaean cratons (for review see Martin and Moyen, 2002; Smithies et al., 2003). The subduction zone model for the genesis of 3.45 Ga Barberton komatiites has been proposed by Parman et al., 1997 and 2001. The efficacy of an arc environment in accounting for the chemical characteristics of komatiites mainly Al-depletion, high-MgO, positive or absence of Nb anomalies, Nb/U, Nb/Th, Nb/La, and Th/U ratios and high eruption temperatures of Archaean komatiites (∼1600°C) has been debated (Arndt, 2003; Chavagnac, 2004; Jayananda et al., 2008). However, Mukhopadhyay et al. (2012) have inferred an oceanic supra-subduction zone geodynamic setting from their studies in the southern IOG mainly in the Tomka-Daitari belt. Many workers have suggested the origin of komatiite melt from the ascending hottest portions of mantle plumes (Campbell et al., 1989; Ohtani et al., 1989; Griffith and Campbell, 1992; Arndt et al., 1997; Arndt, 1994, 2003; Chavagnac, 2004;Jayananda et al., 2008).
In the following section, we discuss various models to explain the tectonic setting of komatiite magma generation and eruption within the regional geological framework of the Singhbhum craton. Any geodynamic model proposed for Mesoarchean komatiites in BGGB must account for sub-contemporaneous mafic to felsic rocks of greenstone belt and the surrounding TTG basement. The analysed data of Patka komatiites are plotted in different discriminating diagrams viz. $R_1 - R_2$, Zr vs. Zr/Y, Zr vs. Ti, Zr/Nb, and Nb/Th and Nb/Y vs. Zr/Y for understanding the tectonic environments of komatiites. The plot of $R_1 - R_2$ diagram (Fig. 9a) point out the origin of komatiites through mantle-derived fractionates. Komatiites tend to plot in the field of island arc basalts in Zr vs. Zr/Y diagram (Pearce and Norry, 1979) and IAT field in Zr vs. Ti binary diagram (Pearce and Cann, 1973) (Figs. 9b & c). Data on the mafic-ultramafic volcanics (Sengupta et al., 1997) from eastern, western and southern segments of the IOG supracrustals in the Singhbhum craton were plotted together with the Patka komatiites in Nb/Th vs. Zr/Nb and Zr/Y vs. Nb/Y diagrams (Figs. 9d & e) which help a comparative study and speculation of the possible tectonic settings for these rocks (Fig. 1 of Condie, 2005). In the Nb/Th vs. Zr/Nb diagram, these komatiites cluster away from the other volcanics, and in the Nb/Y vs. Zr/Y diagram, they cluster between deep depleted mantle (DEP) and primitive mantle (PM). The Patka komatiite in the BGGB erupted in marine and sub-aerial environments and is enriched in SiO_2, MgO, Ni, and Cr but depleted in Al_2O_3, MgO, Ni, and Cr but depleted in Al_2O_3 and TiO_2. Al_2O_3/TiO_2, CaO/Al_2O_3, $(Gd/Yb)_N$, $(Sm/Yb)_N$, and $(La/Sm)_N$ ratios, absent of Nb anomalies and LREE and HREE patterns indicate the derivation of these komatiites in a mantle plume - arc geodynamic setting with moderate contamination by continental crust or sub-continental lithosphere.

Figure 9: (a) Diagram of $R_1 = 4Si - 11(Fe+Ti)$ vs. $R_2 = 6Ca+2Mg+Al$ (Batchelor & Bowden, 1985) (b) Patka komatiites plotted in Zr vs. Zr/Y diagram (Pearce and Norry, 1979). (c) Zr vs. Ti binary after Pearce and Cann (1973). (d and e) Zr/Nb vs. Nb/Th and Nb/Y vs. Zr/Y plots of komatiites and other volcanic rocks of Iron Ore Group of different segments in the Singhbhum craton (see Fig. 1 of Condie, 2005).
(Abbreviations: IAT, island arc tholeiites; MORB, mid-ocean ridge basalts; CAB, continental arc basalts; WPB, within plate basalt; UC, upper continental crust; PM, primitive mantle; DM, shallow depleted mantle; HMMU, high mu (U/Pb) source; EM1 and EM2, enriched mantle sources; ARC, arc related basalts; NROMB, normal ocean ridge basalt; OIB, oceanic island basalt; DEP, deep depleted mantle; EN, enriched component; REC, recycled component).

3. Conclusion

Hitherto-unreported one body of komatiite from the Badampahar Group belonging to the eastern Iron Group, Singhbhum Craton is mapped to the south of Patka, Jharkhand which preserved excellent random spinifex, platy spinifex, and cumulate zones. It is mainly composed of tremolite, serpentinite, magnetite, chlorite, and talc besides glass and rare skeletal olivine, clinopyroxene, and orthopyroxene minerals assemblage, indicative the metamorphism from greenschist to lower amphibolite facies. Komatiite is enriched in SiO₂, MgO, Ni, and Cr but depleted in Al₂O₃ and TiO₂, Al₂O₃/TiO₂, CaO/Al₂O₃, (Gd/Yb)N, (Sm/Yb)N and (La/Sm)N ratios, absent of Nb anomalies and LREE and HREE patterns. In the Nb/Th vs. Zr/Nb diagram, these komatiites cluster away from the other volcanic, and in the Nb/Y vs. Zr/Y diagram, they cluster between deep depleted mantle (DEP) and primitive mantle (PM). Bivariate plots of (Gd/Yb)N versus CaO/Al₂O₃ and Al₂O₃/TiO₂ imply a varying degree of involvement of garnet in the generation of komatiite melt in the mantle. Based on the above observations, it can be stated that the derivation of Patka komatiite in a mantle plume - arc geodynamic setting with moderate contamination by continental crust or sub-continental lithosphere.

4. Acknowledgments

The authors express thanks to the Director General, Geological Survey of India for permitting publication of the paper and are also grateful to the Deputy Director General, SU: Odisha, Bhubaneswar for providing necessary logistics support while carrying out fieldwork and laboratory studies. The authors would like to convey their sincere thanks and gratitude to the Deputy Director General, SU: Bihar, Patna and Shri S. C. Srivastava, former Director, Geological Survey of India for their cooperation, constant encouragement, guidance and valuable suggestions during the work.

References

[19] Cattell, A. and Arndt, N., 1987: Low and high alumina komatiites from a late Archaean sequence,

Volume 9 Issue 8, August 2020
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

