
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Efficient Methods to Avoid Smart Contract

Vulnerabilities Using Block Chain

B. Ratnakanth
1
, M. Sahiti

2
, Dr. K. Venkata Ramana

3

1Vignan Institute of Technology & Science, Hyderabad, A.P., India

2Dep: Computer Science and System engineering, Andhra University, Visakhapatnam, A.P., India

3Assistant Professor, Andhra University, Visakhapatnam, A.P., India

Abstract: Ethereum smart contracts are programs which will run inside public distributed network called block chain. These smart

contracts are used to perform operation over ether i.e transfer, receiving across the blockchain, by public to manage their accounts.

These smart contracts are immutable once deployed on blockchain. So, developers need to make sure that smart contracts are bug- free

at the time of deployment. As we are developing supply chain management (SCM) for textile industry project, to protect the project

from smart contract vulnerabilities. In this paper we have analyzed the Decentralized Autonomous organization i.e DAO attack, which

takes the advantage of smart contract vulnerability. Some functions are exposed to access by external contracts. The attacker makes

use of vulnerability in smart contract and he can implement code to recursively call the function to transfer the funds in to his own

account. And also we analyzed Reentrancy attack, which also used by attacker to recursively call the contract to multiple transfers of

funds to his own account. And finally we analyzed Underflow attack, which make use of vulnerability in smart contract while

transferring ethers between the users without considering limitations of integers values i.e uint8,uint16 etc.

Keywords: attacks, blockchain, smart contract, supply chain management

1. Introduction

The fast digitization of industry in supply chain

management. Opportunities around digitization have made

possible for supply chain to able to access, store and

process huge amount of data from the firm and also

externally. For instance, the manufacturing industries are

now able to obtain customer data to personalize the sales

process, product design and service. The amount of data

stored and distributed also improved in both forecasting

accuracy and development of predictive solution [G.

Schniederjansa, Carla Curadob, Mehrnaz Khalajhedayatia

in 2019].

Block chain technology: From the invention of Bitcoin, a

crypto currency, in 2008, Blockchain technology has placed

in the central point of interest among a diverse range of

researchers and developers [6]. The Blockchain is a

decentralized ledger, which stores all the transactions made

on peer to peer network. Block chain technology is secure,

open source and immutable.

The main advantage of block chain technology over a other

technologies is that it enables the users can make

transactions securely without interference of any

intermediary [mohammad dabbagh, mehdi sookhak2, and

nader sohrabi safa3]. The blockchain is become popular

now a days in industries finance, IOT, health care, and

supply chain management system. [6].

Smart contract concept was initially proposed by Nick

Szabo in 1997. A smart contract is a program that runs on

the block chain autonomously. Smart contract, which

enforce the pre-defined rules of an agreement without the

interference of trusted third party [7]. This feature support

the smart contract with low transaction cost, but there is a

security issue such as it has inherent immutability of

blockchain i.e. not possible to change the contract, once it is

deployed in the block chain

Smart contracts are referred as self- autonomous and self-

verifying agent, consist of fields and functions. The

deployed smart contract receives a contract account

address, which is different from user accounts, who are

interact with smart contract. The smart contracts are

converted into low level byte code called as “Ethereum

virtual machine code” or EVM code. As Ethereum is a

public block chain, so byte code of every smart contract is

publicly available and every node in the block chain can see

the code. So, the behavior of smart contract is predictable.

The smart contracts have a functionality to hold a state,

exchange digital assets, store data, receive the information

from external contracts. Smart contract function is triggered

by either message call or transactions sent to the contract

unique address [10].

Call to the Unknown

Some of the primitives used in solidity to invoke functions

and to transfer ether may lead to the side effects of invoking

the fallback function of the callee/recipient. The CALL

invokes a function (of another contract or itself), and

transfer ether to the recipient. Ex: One can invoke a

function test of contract x as follows

x. call.value (amount)(bytes4(sha3(“test(uint256)”)),n);

Here the called function is identified by first 4 bytes of its

hash signature, amount refer to the how many wei needs to

be transferred to x, and n represent the actual parameter of

test function. Suppose, if a function with this signature is

not available in the recipient contract x, then the fallback

function of x is executed [9].

Paper ID: SR20809215923 DOI: 10.21275/SR20809215923 600

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Here is a method to forward gas to the receiving contract

using addr.call.value () (“”). It is basically same as

addr.transfer(x), only that it forwards all remaining gas and

make possible the recipient to perform more exclusive

actions. There might be calling back into the sending

contract or other state variable changes you might not have

thought of. Finally, it allows more flexibility for malicious

users [10].

If a contract receives ether (without a function being

called), either the receive Ether or the fallback function is

executed. If it does not have a receive nor fallback function,

the Ether will be rejected (by throwing an exception).

During the execution of one of these functions, the contract

can rely on the “Gas stipend” it is passed (2300 gas) being

available to it at that time [10].

Fallback Function: A contract can have at most one

fallback function, declared by fallback () external payable.

This function cannot have arguments, cannot return

anything and have external visibility. It is executed on a call

to the contract, if none of the other functions match the

given function signature, or if no data is supplied at all and

there is no receive ether function

2. Methodology

2.1 DAO ATTACK

The DAO is abbreviated as Decentralized Autonomous

Organization. The concept behind the DAO in block chain

generally, is to codify the rules and regulations of

organization in the form of smart contracts. Thus,

eliminating the use of documents and administration by

individuals and to create autonomous system, in the form of

decentralized control. The group of people writes the smart

contract to govern the organization. Then followed by

initial funding period, where the participants purchase the

tokens in exchange of ether, to get the voting rights.

Followed by, the people can submit project proposals to

DAO, and they can approved by the members, who has

voting rights to get funds from DAO. [1]. The DAO came

into operate in 30
th

 April 2016, with an amount of initial

funding period for 28 days. By that period, DAO has

collected $150 million in ether from 11,000 participants.

From that day onwards attacker trying to attack DAO to

hack the funds. On 17th June, an attacker exploited the Re-

entrancy vulnerability and he managed to drain 3.6 million

ether from DAO [1].

Problem: DAO ATTACK

The main contract contains DAO funds deposited by users

with their address. The users can deposit and withdraw their

funds through their address. But attacker create a Malicious

contract and deposits money in to DAO and attack the DAO

to drain all the funds by using fallback () function and flaw

in msg.sender.call.value (amount) (“”);

Sol:

Algorithm1: DEPOSIT IN DAO CONTRACT

Any user can deposit ether into DAO contract through

their address and update balance

Input:

Uaddr1 ← User Address1

Ubal1 ← update balance Uaddr1

Dusr1 ← deposit into Uaddr1

Output: update the balance of the user

1. Begin: Uaddr1 ← Fetch user address1

2. Call deposit() function

2. Dusr1 ← deposit 20 ether into DAO

3. Ubal1 ← update balance of user1

4. End

Algorith2: ATTACKER CONTRACT

Attacker can deposit ether into DAO. And attack the

DAO by Recursive fallback () function.

Input:

Uaddr2 ← Attacker Address2

Uaddr3 ← Attacker contract Address3

Ubal3 ← Attacker contract balance Uaddr3

Dusr32 ← deposit into Uaddr3

1 Begin: Uaddr2 ← Fetch attacker address2

2. Uaddr3 ← Fetch attacker contract address3

3. Call deposit() function

4. Dusr3 ← Attacker deposited 10 Ether into DAO through

Malicious contract address

5. Ubal3 ← update balance of Attacker contract address

6..Attacker call Fallback ()

8. Withdraw () function called in side fallback() function.

9. Withdraw () function called recursively until 30 ether

transferred to Malicious contract address.

9. Attacker call getJackpot ()

10 Funds 30 Ether transferred to Attacker account From

malicious contract address.

Paper ID: SR20809215923 DOI: 10.21275/SR20809215923 601

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2.2 Under Flow Attack

In solidity language there is a value limitation exist for

integers, lack of awareness of these limitations lead to some

wrong results. In solidity language an integer data are

represented with bit level specification, such as uint8 used

for 8-bit unsigned integer or uint, which is an alias for

buint256 used to represent 256 bit unsigned integer. The

bit level specification of integer leads to value storage

limitations. Like, when performing operations such as

addition, subtraction there will be overflow / under flow can

occurs [2].

Problem:

Bank transaction between sender and receiver

Algorithm1: contribution to the sender account

Input:

Uaddr1 ← sender account

Daddr1 ← sender account

Val ← value to be transfer

Daddr2 ← receiver account

Bbal1 ← Balance of the sender account

Bbal2 ← receiver account

Output:

1. Begin:

2. Fetch sender account ← Uaddr1

 3. Contribute to the sender account contribute() function

4. Val ← value to be transfer

5. Fetch Daddr2 ← receiver account

6. Call transfer () function

7. Update the balance of sender and receiver account

8.Chek the underflow/over flow attack

9. Repeat step 1 to 8 to observe different cases

2.3 Reentrancy Attack

The main danger of calling an external contract is that they

can take over the control flow and make changes your data

that the called was not expecting. In Reentrancy attack (i.e

recursive call attack), a malicious contract can calls back to

the calling contract before the first invocation of the

function is finished. This may lead to the different

invocation of the function to perform in a undesirable

manner. The function could be called repeatedly, before the

first invocation of the function was finished [4].

External calls:

When call made to untrusted contracts can always

introduces several unexpected risk or errors. External calls

may execute malicious code in that contract. So every

external call should always treat as potential security. When

it is not possible or undesirable to remove external calls, use

recommendations.

Problem: Malicious contract able to attack smart contract

by using Reentrancy.

Main contract:

This contract enables the users can deposit and withdraw

their funds either internally or external from contract.

Algorithm1: Reentrance Main Contract

Any user can deposit ether into Reentrance main contract

through their address and update balance

Input:

Uaddr1 ← User Address1

Ubal1 ← update balance Uaddr1

Dusr1 ← deposit into Uaddr1

Output: update the balance of the user

Begin: Uaddr1 ← Fetch user address1

1. Call deposit () function

2. Dusr1 ← deposit 30 Ether in to main contract

3. Ubal1 ← update balance of user1 as 30 ETH.

4. End

Attacker Contract:

Attacker deployed malicious contract and he will deposit 10

ETHER in to main contract by using malicious contract

address and able to withdraw 40 ETHER from main

contract by using RECURSIVE call function i.e fallback()

function.

Paper ID: SR20809215923 DOI: 10.21275/SR20809215923 602

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Algorith2: Malicious contract

Input:

Uaddr2 ← Attacker Address

Uaddr3 ← Malicious contract Address

Ubal3 ← Balance of Malicious contract address

Dusr32 ← Deposit in to malicious contract address

1. Begin: Uaddr2 ← Fetch attacker address

2. Uaddr3 ← Fetch Malicious contract address

 Call deposit() function

3. Dusr3 ← deposit 10 ETHER into main contract through

malicious contract address.

5. Ubal3 ← update balance of malicious contract address.

6. Attacker call Recursive Fallback () function inside

malicious contract.

7.withdrawEquity() function called recursively inside

fallback() function until 40 Ether drain from main contract

8. In withdrawEquity () function there is a vulnerability,

that the state variable of the current contract is not updated

after withdrawn amount from the state variable.

9.So immediately the control transferred to the calling

contract, before finishing the first invocation in the main

contract, due to characteristic of

msg.sender.call.value(amount)();

10. And the withdrawn () function is called recursively until

the all the amount drain from the main contract or run out of

gas.

11.attacker called winnerWinnerChickenDinner ()

function to transfer amount in to his account

3. Observations and Results

We have performed experimental observations on JVM,

web3 provider using Ganache and Injected web3 using

Rinkeby Test Network. We have used solidity v0.6.1

language using REMIX IDE.And the Ether value in INR

24,144.32.

Table 1: Experimental results obtained after deployed on Rinkeby test network using metalmark for dao attack

Sno Operation performed
Input to the

function call

Updated balance

of the user

(ether)

Update balance of the

attacker (ether)

Transaction

cost (gas)

Transaction fee

(ETHER)

Total cost

in Rupees

(INR)

1 Contract deployed - - - 197221 0.014791575 Ether 314.2490

2
Donation to the user account

with address
20 Ether 20Ether - 42515 0.003188625 Ether 67.74277

3
Attacker Deploy malicious

contract
- - - 270340 0.01946448 Ether 413.5255

4
Attacker Donation to the

malicious contract address
10 ether -

10 ether stored in

Main contract
42515 0.003358685 Ether 71.3557

5 Attacker called fallback function - -
30 Ether Received by

the Malicious contract
317598 0.00853875 Ether 181.4069

7 Attacke called jackpot function - -

30 Ether

Transferred to attacker

account

32541 0.00242288 Ether 51.4727

Table 2: Experimental results obtained after deployed on Rinkeby test network using metamask for dao attack
S.

No.
Operation performed

transaction

time

Number of

blocks mined

Number of

transactions mined

Time taken

to mine

Amount of information

mined (in bytes)

1. Contract deployed 38.31seC 6872401 58 15sec 10,085 bytes

2. Donation to the user account with address 35.23 SEC 6872503 5 15 sec 1,641 bytes

3. Attacker Deploy malicious contract 37.46sec 6872655 6 15 sec 2,874 bytes

4.
Attacker Donation to the malicious contract

address
38.55 sec 6872713 7 15 sec 1,824 bytes

5 Attacker called fallback function 33.67 sec 6872976 66 15 sec 9,788 bytes

6 Attacke called jackpot function 30.35sec 6873050 9 15 sec 2,674 bytes

Figure 1: Attacker deposited 10 ether in to malicious contract using JVM Environment

Paper ID: SR20809215923 DOI: 10.21275/SR20809215923 603

https://rinkeby.etherscan.io/block/6872503
https://rinkeby.etherscan.io/block/6872655
https://rinkeby.etherscan.io/block/6872713
https://rinkeby.etherscan.io/block/6872976
https://rinkeby.etherscan.io/block/6873050

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: Attacker Gained 30 Ether by depositing 10 ETHER into Malicious contract using JVM Environment

Table 3: Experimental results obtained after deploy o Rinkeby test network using metalmark for underflow attack (bank

balance transfer from sender to receiver)

Sno
Operation

performed

Contribution

to the sender

Case1:transfer1
Case

2:transfer2
Case 3:transfer3 Transactio

n cost

(gas)

Transaction

fee

(ETHER)

Total cost

in Rupees

(INR) input output input output input output

1

Contract

deployed for

bank

customer

- - -

- - - 192793 0.016194612 38.64

2
Contribution

to the sender
5

 41308 0.003387256 80.81

3
Sender

balance
- 5 3 5 0 5

Under flow attack and

balance changed to

maximum value

Cas1;

48809
0.004197574 100.154

4
Value to be

transfer
- 2 - 5 6 -

Cas2;

48809
0.005197594 124.01

5
Receiver

balance
- 0 2 0 5 0 6

Cas3;

48809

0.003198572

-
76.31

Table 4: Experimental results obtained after deploy on Rinkeby test network using metamask for Reentrancy attack (bank

balance transfer from sender to receiver

Sno Operation performed

Input to the

function

call

Updated balance

of the user

(ether)

Update balance of the

attacker (ether)

Transaction

cost (gas)

Transaction fee

(ETHER)

Total cost in

Rupees (INR)

1
 Main Contract

deployed
- - - 195493

0.019158314

Ether
457.12

2
Donation to the user

account address

30

Ether

30

Ether
- 42515

0.004294015

Ether
102.456

3
Attacker Deploy

malicious contract
- - - 270340

0.02757468

Ether
657.94

4

Attacker Donated to

malicious contract

address

10

Ether
-

Malicious contract

address=10 ether
42515

0.00433653

Ether
103.47

5

Attacker called

recursive Fallback

Function to receive

ETHER

- -
40 ether received by

Malicious contract

0.01345891

Ether
321.134

6

Attacker called Winner

function to received

Ether to his account

- -

40 Ether

Received by Attacker by

depositing 10 ETH to

Malicious contract

23586
0.002500116

Ether
59.653

Figure 3: After donating 10 Ether in to malicious contract

Paper ID: SR20809215923 DOI: 10.21275/SR20809215923 604

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Attacker gained 40 Ether using Reentrancy Attack

Table 5: Security Flaw

S.no Type of attack Security Flaw

1 DAO

1 addr.call.value (amount) (“”); when using this instruction in the contract it will forward the all remaining gas and

open up the recipient to perform some complex operations. It includes calling back to the sending contract or other

states may change, that may not we expect. As a result attackers attack the main contract and drain the whole amount

by using fallback () function.

2

Underflow

1. Overflow: it occurs when uint8(255)+uint8(1)==0. It occurs when the operation performed; the value stored in a

fixed variable is outside the range of the variable type. Attacker try to make the balance is zero value.

2. UNDERFLOW: An under flow occurs when operation performed is uint8(0)-uint8(1)=255. Attacker take

advantage by using this operation.

3

Reentrancy

1. Ether Transfer can always include code execution, So the recipient could be a contract that calls back into

withdraw function. This would let get multiple refunds and basically retrieve all the ether in the contract.By using

call instruction, it will always forward remaining gas to recepent contract..

2. Attacker Using RECURSIVE fallback () function in external contract

Table 6: Secure Method
S. No Type of attack SECURE METHODS

1 DAO 1.First Perform the following checks

Who called the function, are the arguments in given range, did they send enough Ethers, does the person have

enough tokens.

2. If all the above checks are passed, then effects to the state variables of the current contract should made next.

And the interaction with other contracts should be the last step in the any function i.e

msg.sender.call.value(amount(„‟);

3. Include some kind of fail – safe mechanism to check all the above conditions. If it fails, the contract

automatically switches in to some kind of “fail safe “mode. Which Disables most of the features, hands over

control to a fixed or trusted third party or just convert the contract in to a simple “give me back my money”

contract.

4. Include function modifier to check the condition before executing the function.

2 Underflow 1.Use require condition to limit the size of inputs to a reasonable range and Ex: require (balanceof [to]

+_value)>=balance of [to}.

2. use safeMath library.

3.Use the SMT checker.

3 Reentrancy 1. If you are making a call to an untrusted external contract, avoid state changes after the call.

2.Use check effect interaction pattern as discussed in above DAO from step 1 to 4.

4. Suggestions and Recommendations

After practically analyzing all the three smart contract

vulnerabilities, we conclude that while writing smart

contracts using solidity on Ethereum blockchain. It is

compulsory to check the conditions like whether sufficient

ethers are available before transfer, is the receipt is trusted

one, is the integers within the limitation after exchange of

ethers, check whether the current contract state variables are

updated before the ether transfer takes place. And we are

going to check all these conditions on our project, supply

chain management for textile industry as a future scope for

this paper.

References

[1] Security Vulnerabilities in Ethereum Smart Contracts,

Markus,Flatscher, iiWAS ‟18,November 19-21,

2018,Yogyakarta, Indonesia 2018, ISBN 78-1-4503-

6479-

9/18/11,https://doi.org/10.1145/3282373.3282419.

[2] SMT – based Verification of Solidity smart Contracts,

Leonardo Alt and Christian Reitwiessner Ethereum

Foundation

[3] Defects and Vulnerabilities in Smart Contracts, a

Classification using the NIST Framework, Wesley

Dingman,Aviel Cohen,Nick Ferrara,Adam

Lynch,Patrick Jasinski,Paul E.Black,Lin Deng.

[4] https://swcregistry.io/docs/swc-107

[5] https://consensys.github.io/smart-contract-best-

Paper ID: SR20809215923 DOI: 10.21275/SR20809215923 605

https://swcregistry/
https://consensys.github.io/smart-contract-best-practices/known_attacks/#reentrancy

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

practices/known_attacks/#reentrancy

[6] Supply chain digitization trends: An integration of

knowledge management Dara.Schniederjansa,Carla

Curadob, Mehrnaz,,Khalajhedayatia,

https://doi.org/10.1016/j.ijpe.2019.7.012

[7] The Evolution of Blockchain: A Bibliometric Study

MOHAMMAD DABBAGH 1,MEHDI SOOKHAK2,

AND NADER SOHRABI SAFA3.

[8] Security Vulnerabilities in Ethereum smart Contracts,

Alexander Mense, Markus Flatsscher,2018,November

19-

21.2018,Yogyakarta,Indonesia,2018,https://doi.org/10.

1145/3282373.3282419

[9] KEVM : A Complete Formal Semantics of the

Ethereum Virtual Machine, Everett Hildenbrandtac,

Manasvi Saxena, Nishant Rodriguesb, Xiaoran

Zhuae,2018 IEEE 31
st
 Computer Security Foundations

Symposium

[10] Security considerations

https://solidity.readthedocs.io/en/v0.6.10/securityc-

onsiderations.html?highlight=security%20consideratio

ns.

[11] Satchain: Secured Autonomous Transactions in

Supplychain Using: Block chain, B.Ratnakanth,

K.VenkataRamana, IJITEE, ISSN:2278-3075, Volume-

9 Issue-6, April 2020.

[12] Systematic Approach To Analyze Attacks on SCM:

Using Blockchain, B.Ratnakanth, Dr.K.VenkataRamana,

IJRTE, ISSN:2277-3878,Volume-9 Issue-2,July2020

[13] Secure payment system in supplychain management

using blockchain technologies, www.jetir.org, ISSN-

2349-5162,© 2019 JETIR June 2019, Volume 6, Issue

[14] A Survey of Attacks on Ethereum Smart Contracts

(SOK), Nicola Atzei, Massimo Bartoletti (B), and

Tiziana Cimoli, Springer –Verlag GmbH Germany

2017 M.Maffei and M.Ryan (Eds.), DOI:10.1007/978-

3-662-54455-68.

Paper ID: SR20809215923 DOI: 10.21275/SR20809215923 606

https://doi.org/10.1016/j.ijpe.2019.7.012
https://solidity.readthedocs.io/en/v0.6.10/securityc-onsiderations.html?highlight=security%20considerations
https://solidity.readthedocs.io/en/v0.6.10/securityc-onsiderations.html?highlight=security%20considerations
https://solidity.readthedocs.io/en/v0.6.10/securityc-onsiderations.html?highlight=security%20considerations

