
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Docker & Containers, The Future of Microservices

Goutam Kamate
1
, S.G Raghavendra Prasad

2

1Information Technology, R.V College of Engineering, Bengaluru, India 1RV18SIT06

2Professor, Dept of Information Science & Engineering, R.V College of Engineering

Abstract: Docker is a container technology and is also called as container-based virtualization which has multiple instances on

operating system running over a single kernel. Here the operating system's kernel runs on the underlying hardware with isolated virtual

machines called as containers. Micro-service architecture is not a new thing but started getting attention when the docker was

introduced and many companies around the world are shifting from a standalone architecture to micro-service architecture. With lot of

pros, Docker is a very good fit for micro- service architecture application. In this paper we will discuss the micro-services architecture

and how docker will help to resolve the challenges in micro-service architecture.

Keywords: cloud, docker, container, container orchestration virtualization, hypervisor, automation, micro services

1. Introduction

Docker is a container platform which can be used to run the

applications with in lightweight containers or also called as

running the application in isolated environment. The docker

came into existence on the year 2013 changed the way of

software deployment, Since then the popularity of operating

system virtualization gained popularity, before docker there

was a virtualization technology called hypervisor where we

can only run one virtual machine at a time and running

second could impact on the first virtual machine's

performance and it had various problems like lack of

flexibility and performance compared to docker.

Nowadays the most popular cloud vendors such as amazon

web service, Google cloud, Microsoft azure and many more

cloud vendors added container as a service to their platform

to support container technology.

A formal approach of building the application in last

generation was by using monolithic architecture where one

deployment has several responsibilities and handling this

kind of application was a headache because if anything goes

wrong, they have to debug the entire system to check what

has gone wrong. Monolithic is good for small scale

applications but in very large applications it's a very big

barrier.

So here comes micro-service architecture in the picture to

avoid the limitations of monolithic design, so as the code

base gets bigger it’s better to decouple the application into

multiple services so that the application can be handled easily

and also application have the advantage of flexibility. There

were some downsides for micro- service approach so docker

was introduced as the solution to solve micro service

architecture.

2. Microservices Architecture

Microservice is a collection of small services that work

together to fulfill the business requirements. In this section

we discuss overview, its benefits, drawbacks and

characteristics.

Figure 1: Microservice architecture overview

The above diagram represents the microservice architecture

where java, python, SQL, API acts as a different service.

a) Benefits:

 Easy to build and maintain the apps: Since the application

is divided into small services it easy to build small

components or services and are easily maintainable

 Improved productivity and speed: Different teams can

work on different services simultaneously. Separate

services are easy to modify

 Better testability: Since the services are smaller and are

easy to test

 It can help you organize development effort with multiple

and autonomous teams

Paper ID: SR20729155059 DOI: 10.21275/SR20729155059 23

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

b) Drawbacks:

 Developer must implement inter-service communication

mechanism

 Testing the interactions between multiple services

 Since it’s a multi service architecture it comes with

deployment complexity

 Increased memory consumption.

 Coordination between the services that communicate with

each other.

c) Hypervisor virtualization and Operating system level

virtualization

Hypervisor based virtualization is a windows specific and is

only found in Microsoft windows operating system. The

focus of hypervisor-based virtualization is to imitate the

underlying physical hardware and create virtual hardware

and on top of all an OS is installed.

Basically, you run a hypervisor on windows and on top of it

you can run or install Linux or windows or any platform

operating system on hypervisor and vice versa. Hypervisor

based virtualization consumes full underlying hardware of

the current operating system, so it may affect the

performance of the system running hypervisor and at a

single time if user tries to run multiple operating system on

top of hypervisor, the system may crash or not respond

properly.

The basic thing all users or geeks should understand about

hypervisor is that everything is done on hardware level.

The below figure shows the architecture

Figure 2: Hypervisor architecture

The main performance impacts for hypervisor happens due

to the face that there are multiple memory and cpu managers

for guest operating system, so it may cause an overhead,

results in performance.

On the other hand, container-based virtualization which is

based on hardware level but is done at an operating system

level.

The main difference between container virtualization and

hypervisor is each container shares the same kernel of the

base system where as hypervisor needs separate kernel for

each guest OS.

Containers are smaller in size and are lightweight compared

to virtualized guest OS. Basic idea behind containers is it

can provide separate environment, without a virtual

hardware emulation which is same as virtualization, but each

container deals with its own network and filesystem.

d) Language-agnostic(cross-language)

Microservices are built with the language that developers are

comfortable with, development should not restrict to any

specific programming language, meaning while developing

microservice application the developers has the freedom of

choosing any technology by which developers fulfill the

requirements. The technology in microservice can be

anything that is C, C++, Java, Python an many more recent

technologies.

Since microservice is language neutral, communication with

each service becomes important factor and the developers or

users has the option of using REST based communication.

It’s not necessary that each service can have same

programming language and can use different languages.

3. What is Docker?

Docker is a opensource tool or an application which is

designed to run applications by containers.

Containers help developers to package an application with

all the required dependencies and act as one package. With

help of containers developers are assured that the application

can run in any platform without any issue of dependency

missing of incompatibility which helps them writing and

testing easy.

Docker allows application to share only needed libraries of

kernel or operation system and avoid full installation of

specific guest OS.

To build docker containers first step is to write a dockerfile

with contains instructions for installation of required

dependencies and fetching the code from git repository or

download the required docker image from container to use

as a base image from docker hub, which is like a repository

for docker images.

Second step is to build the docker image if you write docker

file. Docker image is a packaged version of all project which

acts as one application or a mini operating system.

Third step is by using the built docker image, run the

application. The common terminologies we hear in docker is

docker image, containers, run, process, volumes.

Docker containers are loaded into container ship with one or

more containers which in-turn has an application running

inside it and communication from one container to another

makes it easy.

a) Docker Architecture

Docker uses a client-server architecture an comprises of

Paper ID: SR20729155059 DOI: 10.21275/SR20729155059 24

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

docker client, Host, Network and storage components and

the docker hub. The below diagram illustrates architecture

diagram of docker.

Figure 3: Docker architecture

Docker client: Client enables users to interact with docker

Client can reside on same host as remote host. Docker client

can communicate with more than one demon, It provides

CLI by which we can run, build and stop containers.

Docker Image: Images are binary template used to build

containers. Basically, Images contain metadata that describe

the containers capabilities. Docker images are core part and

they enable collaboration between developers.

Docker containers: Containers are form of operating

system virtualization; a single container might be used to run

anything from small microservice or software.

Docker networking: Docker provides various options in

networking and maintains abstraction in network, each

container has its own network configuration. The other

networks and administrator can configure the same. There

are by default three types of network

a) Bridge network: which forwards traffic to container

network

b) Overlay network: this network is needed when containers

are running on separate host.

4. Why docker is preferred as best for

Microservice

Docker is best for microservice because docker has faster

start time i.e. Containers starts with in a matter of seconds

because its just a small process and not a whole operating

system.

Docker has a faster deployment an no need of separate

environment setup for to run applications, developers only

need to download an image from repository or docker hub

and play with it. As faster deployment helps start application

or service faster.

Easier management of containers makes microservices

architecture feasible and easy to manage services.

Proper and efficient usage of resources can be achieved for

multiple services using docker by which the application

running inside container may have less performance issue.

Since docker supports multiple platforms you can package

and run your docker image in any operating system and

don’t have to bother about dependencies or environment

issues.

5. Conclusion

In this paper we studied about microservice architecture,

benefits, drawbacks of the same and also we studied about

the overview of docker then we studied why docker is a

good fit for microservice architecture and other necessary

fundaments which help in solving the problems using

docker.

References

[1] Sachchidanand Sing, Nirmala Singh, “Containers &

Docker: Emerging Roles & Future of Cloud

Technology,” 2nd International Conference on Applied

and Theoretical Computing and Communication

Technology (iCATccT)

[2] Nitin Naik “Docker Container-Based Big Data Processing

System in Multiple Clouds for Everyone” 17th IEEE

International Conference on Computer and Information

Technology (CIT). IEEE, 2017 .

[3] Docker.com. (2017) Manage data in containers. [Online].

Available:

https://docs.docker.com/engine/tutorials/dockervolumes.

[4] Containers vs. VMs: What's the difference?

http://searchservervirtualization.techtarget.com/answer/C

ontainers- vsVMs-Whats-the-difference.

[5] Virtual Machines Vs. Containers: A Matter Of Scope-

http://www.networkcomputing.com/cloud-

infrastructure/virtual machines-vs-containers-matter-

scope/2039932943.

[6] Infrastructure for container projects-

https://linuxcontainers.org/.

[7] Containers: Fundamental to the cloud's evolution-

http://www.zdnet.com/article/containers-fundamental-to-

the- evolution of-the-cloud/.

Paper ID: SR20729155059 DOI: 10.21275/SR20729155059 25

http://searchservervirtualization.techtarget.com/answer/Containers-
http://searchservervirtualization.techtarget.com/answer/Containers-
http://searchservervirtualization.techtarget.com/answer/Containers-
http://searchservervirtualization.techtarget.com/answer/Containers-
http://www.networkcomputing.com/cloud-
http://www.networkcomputing.com/cloud-
http://www.networkcomputing.com/cloud-
http://www.zdnet.com/article/containers-fundamental-to-the-
http://www.zdnet.com/article/containers-fundamental-to-the-
http://www.zdnet.com/article/containers-fundamental-to-the-
http://www.zdnet.com/article/containers-fundamental-to-the-

