
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

An Analytical Study of NoSQL Database Systems

for Big Data Applications

Raghavendra Sridhar, Rashi Nimesh Kumar Dhenia

1Independent Researcher

Email: princeraj01[at]gmail.com

2Independent Researcher

Email: dhenairashi[at]gmail.com

Abstract: Modern society generates and processes massive volumes of information, commonly referred to as Big Data, across various

domains. Big Data is defined by seven key dimensions: Volume, Velocity, Variety, Variability, Veracity, Visualization, and Value. Traditional

database management systems are often inadequate for meeting the demands of high availability, scalability, and reliability required in

Big Data environments. In response to these challenges, NoSQL databases have emerged as a flexible alternative. Unlike traditional

relational databases, NoSQL systems do not rely on a fixed schema, making them well suited for storing and managing the large-scale,

unstructured data prevalent in many fields. This paper examines the four main categories of NoSQL databases and presents notable

examples from each category.

Keywords: Big Data, NoSQL databases, data scalability, unstructured data, flexible schema, data management, database systems, high

availability

1. Introduction

According to a recent study by IBM, approximately 90% of

the world’s data has been generated in just the past two years,

with the global digital landscape producing around 2.5

quintillion bytes of data each day. Domo, a company

specializing in business intelligence and data visualization,

publishes an annual report titled Data Never Sleeps, which

highlights the scale of online activity happening every

minute. The 2019 edition (available at

https://www.domo.com/learn/data-never-sleeps-7) offers a

vivid illustration of the immense volume of data generated

every 60 seconds. Additionally, a white paper by IDC and

Seagate projects that by 2025, more than 60% of global data

will be generated by enterprises. This forecast underscores the

increasing importance of data creation, utilization, and

management across governments, consumers, and businesses.

There is no doubt that the era of Big Data is rapidly

advancing. It has attracted widespread attention from both

industry and academia. Numerous government initiatives,

including the Obama Administration’s Big Data Working

Group report, have allocated significant resources to support

Big Data research. Prominent media outlets such as The

Economist and The New York Times frequently cover topics

related to Big Data, reflecting its societal relevance. The

research community is heavily engaged in addressing the

challenges posed by Big Data, with premier conferences and

prestigious journals, including Nature and Science, dedicating

substantial focus to this evolving domain.

Figure 1: Data generated every minute in 2019

2. The Ubiquity and Understanding of Big

Data

Big Data has become an integral part of our daily lives,

permeating every aspect of human activity and all sectors of

society. Despite its widespread adoption, significant

challenges remain in data management and numerous open

questions continue to drive research and development efforts.

The healthcare sector exemplifies Big Data's transformative

impact, where it powers medical information systems for

predictive analytics and diagnostic procedures. Additionally,

computer vision and machine learning applications leverage

Big Data for melanoma lesion characterization and feature

detection, demonstrating its critical role in advancing medical

care.

Paper ID: MS2008134522 DOI: https://dx.doi.org/10.21275/MS2008134522 1616

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://www.domo.com/learn/data-never-sleeps-7

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

While we undoubtedly live in the Big Data era, defining

exactly what constitutes "Big Data" requires careful

consideration. The term first appeared in academic literature

through NASA researchers in 1997, and since then, numerous

definitions have emerged, each offering unique perspectives

on this complex phenomenon. To distinguish Big Data from

simply large datasets, researchers have identified multiple

dimensions that capture its essence.

Doug Laney pioneered the foundational "3 Vs" framework—

Volume, Velocity, and Variety—which gained widespread

acceptance in the literature. Building upon this foundation,

organizations like IEEE and various research institutions have

expanded the model to include additional critical dimensions:

Value, Veracity, Visualization, and Variability. This

comprehensive "7 Vs" framework provides a robust definition

of Big Data:

• Volume represents the sheer scale of data generation.

Consider Facebook, where over 890 million users log in

daily, continuously sharing documents, photos, and

comments, creating massive data repositories.

• Velocity describes the speed at which data is both

generated and processed, reflecting the real-time nature of

modern data streams.

• Variety encompasses the diverse types and sources of data

that cannot be accommodated by traditional structured

relational databases. This includes structured data from

databases, semi-structured data like web logs and emails,

and unstructured data such as videos, audio files, and user

interactions.

• Variability addresses the inconsistency and

unpredictability of data, questioning whether data is

consistently available and how to distinguish between

meaningful extreme values and mere noise.

• Veracity focuses on data accuracy and trustworthiness,

emphasizing that data quality, source reliability, and

accuracy are paramount. Uncertainty can arise from

inconsistencies, ambiguities, and incomplete datasets.

• Visualization refers to the tools and techniques that

enable meaningful analysis and presentation of data

insights. Without effective visualization capabilities, even

vast amounts of data remain unusable. Popular tools in this

space include Google Charts, Tableau, D3, Fusion Charts,

Highcharts, and Microsoft Power BI.

• Value represents the ultimate objective of Big Data

initiatives—extracting meaningful, actionable insights

that drive organizational success and decision-making.

Together, these seven dimensions provide a comprehensive

framework for understanding what makes Big Data distinct

from traditional data management challenges.

3. Evolution from Traditional Databases to

NoSQL: Meeting Modern Data Challenges

Traditional Relational Database Management Systems

(RDBMS) have been the backbone of data storage for over

four decades, successfully serving organizations across

various scales and applications. These systems organize data

in a structured format using tables, columns, and rows, where

information is entered once and can be efficiently stored

across multiple tables through established relationships. The

relational database model, originally conceived by Edgar F.

Codd at IBM's Research Laboratory in 1969, introduced a

logical approach to data organization along with SQL

(Structured Query Language) for querying and retrieving

information. For decades, RDBMS have been the gold

standard for data storage, offering stability, reliable

performance, and data consistency.

However, the emergence of Big Data has exposed significant

limitations in traditional relational systems. RDBMS struggle

to meet the demanding requirements of high availability,

scalability, and reliability that characterize modern data

environments. This bottleneck has necessitated the

development of new database technologies, collectively

known as NoSQL databases. Unlike their relational

counterparts, NoSQL systems embrace flexibility rather than

rigid structure, making them particularly well-suited for

handling the large-scale, unstructured data that defines today's

digital landscape.

The fundamental difference between these approaches

becomes clear when examining their underlying principles.

Traditional RDBMS operate under ACID properties, which

ensure strict data integrity: Atomicity requires that database

transactions either succeed completely or fail entirely;

Consistency ensures that transactions maintain the database's

valid state; Isolation prevents transactions from interfering

with one another; and Durability guarantees that completed

transactions persist permanently. While these properties

provide robust data integrity, they become problematic in

distributed environments where performance and availability

are paramount.

This challenge is formalized in the CAP theorem, which

demonstrates that distributed systems cannot simultaneously

guarantee Consistency, Availability, and Partition tolerance—

forcing architects to choose between maintaining strict

consistency and ensuring system availability. NoSQL systems

typically embrace the BASE model instead: Basic

Availability ensures the system remains operational; Soft

State acknowledges that system state may change over time;

and Eventual Consistency accepts temporary inconsistencies

while guaranteeing that the system will achieve consistency

eventually. In essence, distributed systems must make a

strategic choice between maintaining perfect consistency and

ensuring continuous availability, with NoSQL databases

generally favoring availability and performance over strict

consistency.

4. Understanding NoSQL Database Types: A

Comprehensive Overview

This section explores the most widely adopted NoSQL

database types and examines representative solutions within

each category.

4.1 Key-Value Oriented Databases

Key-value databases represent the most straightforward

implementation of NoSQL technology. This approach, which

has also been successfully utilized in peer-to-peer systems

like Tapestry, Chord, and Kademlia, stores information as

simple key-value pairs. Each key serves as a unique identifier

that allows for direct data retrieval, creating a structure

Paper ID: MS2008134522 DOI: https://dx.doi.org/10.21275/MS2008134522 1617

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

fundamentally different from relational databases that rely on

predefined fields and data types within structured tables.

Unlike relational systems, key-value databases operate

without predefined relationships or rigid structures. Data

exists as a single collection where each record can contain

different fields, providing complete control over stored values

while ensuring high expandability and rapid query response

times. Scalability and availability are achieved through data

partitioning and replication across server clusters.

• DynamoDB stands out as Amazon's flagship NoSQL key-

value storage system within Amazon Web Services.

Designed to handle massive data volumes and high request

traffic, DynamoDB organizes data in tables accessed

through read and write operations. Each item is uniquely

identified by a primary key used for query execution. The

system automatically distributes data across multiple

servers, utilizing solid-state drives for storage and

implementing automatic replication to ensure high

availability and data durability.

• Voldemort, developed and used by LinkedIn, offers a

streamlined interface with three core operations: read,

write, and delete. The system automatically handles data

partitioning and replication across multiple servers, with

each node operating independently to eliminate single

points of failure. While it doesn't guarantee strict data

consistency, Voldemort provides asynchronous updating

capabilities and supports data versioning to maximize

integrity during failure scenarios.

• Redis, created in 2009 and written in C, functions as both

a NoSQL database and data structure server. Beyond basic

key-value storage, Redis supports complex data types

including hashes, strings, lists, and sorted sets, making it

particularly valuable for applications requiring high

performance and speed.

4.2 Column-Oriented Databases

Column-oriented databases fundamentally differ from

relational systems by storing data in columns rather than

rows. This approach eliminates the need for prestructured

tables, allowing each row to define its own column names and

formats. The column-grouping mechanism enables single

disk operations to retrieve related data, contrasting with

relational databases that often require multiple read

operations across different disk locations.

• Google Bigtable represents a pioneering column-oriented

distributed database designed to manage petabytes of data

while supporting applications requiring massive

scalability. Made publicly available in 2015, Bigtable

powers major Google applications including YouTube,

Gmail, Google Maps, Google Book Search, and Google

Earth. While Google maintains proprietary control, its

open-source nature has inspired derivatives like Apache

HBase and Cassandra.

• HBase, an open-source database written in Java and

developed under the Apache Hadoop project, follows the

Bigtable model and excels in real-time Big Data querying

scenarios.

• Cassandra, originally developed at Facebook in 2008,

combines Dynamo's distributed technology with

Bigtable's data model. This integration provides column-

oriented benefits alongside high-performance log-

structured updates, supporting effective denormalization,

built-in caching, and materialized views. Organizations

like CERN, eBay, Instagram, Comcast, and Netflix rely on

Cassandra for applications requiring both scalability and

availability without performance compromise.

4.3 Document-Oriented Databases

Document-oriented databases emerged to address the

limitations of schema-dependent relational systems. These

databases store records as self-describing documents using

formats like JSON, XML, and BSON. While similar to key-

value storage, document databases treat values as complete

documents, enabling support for complex nested data

structures. Fast retrieval remains possible even without

knowing specific keys, provided popular fields are properly

indexed.

• MongoDB, an open-source, cross-platform database with

native JSON support, began development in 2007 and

became publicly traded on NASDAQ in 2017. MongoDB

requires no database administrator for initial setup and

offers robust versioning to ensure consistency during

complex transactions. Its dynamic query capabilities and

powerful aggregation tools make it ideal for managing

high data volumes with substantial write loads.

• CouchDB, implemented in Erlang and developed in 2005

before becoming an Apache Software Foundation project

in 2008, stores data using JSON and performs queries with

JavaScript. Particularly well-suited for web applications,

CouchDB effectively handles redundancy and conflict

resolution while storing every change as a document

revision on disk.

4.4 Graph-Oriented Databases

Graph-oriented databases represent a completely different

paradigm from other NoSQL types, using graph structures for

storage, mapping, and querying. Entities become nodes with

properties defined as key-value pairs, while labels tag nodes

to describe roles and associate metadata, constraints, and

indexes. Relationships create directed, named, and

semantically meaningful connections between nodes.

Neo4j, developed by Neo4j Inc., serves as a comprehensive

graph database management system that maintains ACID

properties. Implemented in Java, Neo4j stores all data as

nodes, edges, or attributes and is available in Community,

Enterprise, and Government editions to meet various

organizational needs.

This diverse ecosystem of NoSQL databases provides

organizations with flexible options to address specific data

management challenges that traditional relational systems

cannot effectively handle.

5. Advancing Architectural Excellence: The

Case for a Dedicated Maturity Model

Each type of NoSQL database is designed to address unique

challenges and is well-suited to specific application scenarios.

To help clarify these distinctions, Table I summarizes the

main storage types within the NoSQL category, while Table

II provides a comparative overview of several prominent

Paper ID: MS2008134522 DOI: https://dx.doi.org/10.21275/MS2008134522 1618

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

NoSQL database solutions. This approach enables

organizations to make informed decisions when selecting the

right database technology for their particular needs.

Table 1: Comparison of NoSQL Database Management System Types
Database Type Application Field Representative Systems

Key-Value Storage Logging Systems Dynamo, Redis, Voldemort

Column-Based Storage Distributed File Systems BigTable, Cassandra, HBase

Document-Oriented Web Applications MongoDB, CouchDB

Graph-Based Storage Social Networking Platforms Neo4j, GraphDB

Table 2: Comparison of Selected NoSQL Database Systems
Database System Schema Design Supported Data Types Architecture Replication Model License Type

DynamoDB Schema-free Structured Master–Slave Asynchronous Proprietary

BigTable Fixed schema Structured Master–Slave Synchronous & Asynchronous Proprietary

HBase Fixed schema Structured Master–Slave Asynchronous Open Source

Cassandra Optional schema Semi-structured, Unstructured Peer-to-Peer (P2P) Asynchronous Open Source

MongoDB Dynamic schema Semi-structured, Unstructured Master–Slave Asynchronous Open Source

6. Concluding Thoughts on the NoSQL

Landscape

The realm of NoSQL databases is remarkably broad and

varied, with a wealth of available options and numerous ways

to categorize them. It has become evident that the

conventional idea of a single database solution meeting all

requirements is no longer viable. This paper, while not

attempting to be an exhaustive survey given the sheer number

of available systems, has aimed to illuminate the core features

of the principal NoSQL database types. We have examined

these major categories and highlighted some of their most

popular and illustrative examples, thereby offering a

foundational perspective on this dynamic and vital field of

data technology.

References

[1] IBM, '10 Key Marketing Trends For 2017 and Ideas for

Exceeding Customer Expectations', IBM Institute for

Business Value, 2017.

[2] Domo, 'Data Never Sleeps 7.0', 2019. [Online].

Available: https://www.domo.com/learn/data-never-

sleeps-7

[3] The White House, 'Big Data: Seizing Opportunities,

Preserving Values', Executive Office of the President,

2014.

[4] The Economist, 'Fuel of the Future: Data is giving rise

to a new economy', May 2017. [Online]. Available:

https://www.economist.com/

[5] S. Lohr, 'The Age of Big Data', New York Times, Feb.

2012.

[6] D. Laney, '3D Data Management: Controlling Data

Volume, Velocity and Variety', META Group Research

Note, Feb. 2001.

[7] Apache Cassandra, 'Cassandra Documentation', The

Apache Software Foundation, 2023. [Online].

Available: https://cassandra.apache.org/

[8] F. Chang et al., 'Bigtable: A Distributed Storage System

for Structured Data', ACM Trans. Comput. Syst., vol.

26, no. 2, 2008.

[9] Amazon Web Services, 'Amazon DynamoDB', AWS

Documentation. [Online]. Available:

https://docs.aws.amazon.com/dynamodb/

[10] M. Stonebraker, 'SQL Databases v. NoSQL Databases',

ACM Queue, vol. 9, no. 4, 2011.

[11] B. Fitzpatrick, 'Distributed Caching with Memcached',

Linux J., vol. 2004, no. 124, Aug. 2004.

Paper ID: MS2008134522 DOI: https://dx.doi.org/10.21275/MS2008134522 1619

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

