
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Cloud - Native Security: Securing Serverless

Architectures

Ishva Jitendrakumar Kanani1, Raghavendra Sridhar2

Independent Researcher

Email: ijkanani02[at]gmail.com

Independent Researcher

Email: princeraj01[at]gmail.com

Abstract: The adoption of serverless computing platforms such as AWS Lambda has introduced new efficiencies in cloud - native

application development while simultaneously shifting the burden of security from infrastructure management to configuration

management. This paper presents a case study on securing a production - grade serverless architecture using AWS services. It explores

real - world misconfigurations across IAM roles, public APIs, dependency vulnerabilities, and observability blind spots, identifying how

these security gaps emerge in fast - paced development workflows. The study then documents practical remediation steps, including

minimizing IAM policies, securing API Gateway endpoints, scanning dependencies, managing secrets, and enhancing centralized

logging. Unlike traditional approaches that rely on perimeter security or infrastructure controls, this work highlights how security must

be embedded into the fabric of service permissions, event handling, and function orchestration in serverless systems. The case study

provides actionable insights for cloud - native teams seeking to improve application resilience while preserving the agility of serverless

development.

Keywords: Serverless Security, Cloud - Native Applications, AWS Lambda, IAM Hardening, Application Observability, API

Authorization, Zero Trust Cloud, DevSecOps, Cloud Observability, CI/CD Security

1. Introduction

Serverless computing, epitomized by platforms like AWS

Lambda, represents a paradigm shift in software deployment.

It abstracts server management, enables event - driven

workflows, and allows applications to scale elastically

without dedicated infrastructure. While this model reduces

operational burdens, it also redistributes responsibility—

particularly in terms of security. As organizations adopt

serverless to accelerate time - to - market and simplify

deployments, they often inherit a complex and unfamiliar

security posture.

Traditional perimeter - based defenses are ineffective in this

new model. Instead of managing virtual machines, developers

configure granular permissions, secure multiple event

sources, and monitor dozens of short - lived execution

environments. Despite the maturity of cloud infrastructure

providers, the onus of configuring and maintaining secure

serverless applications falls on development teams.

Misunderstandings about the shared responsibility model or

neglecting infrastructure - as - code practices can lead to

overexposed endpoints, data leakage, and unintended

privilege escalation.

This paper presents a detailed, implementation - level case

study of a cloud - native application deployed using AWS

Lambda, API Gateway, DynamoDB, and supporting services.

It identifies misconfigurations and risk points typical in fast -

moving development environments and demonstrates how

pragmatic, AWS - native hardening strategies can close those

gaps. Unlike broader surveys or abstract threat models, this

study grounds its findings in real deployment scenarios. This

case study contributes to the emerging body of knowledge

that bridges the gap between conceptual models and secure

serverless engineering practices [6].

2. Literature Review

Security concerns in serverless systems have received

growing attention in industry research and community - led

frameworks. The OWASP Serverless Top 10 [1] outlines key

categories of risk specific to serverless applications, including

insecure event data, broken authentication, improper

exception handling, and the risks of relying on external

packages. These issues stem from the highly modular and

event - driven nature of serverless platforms.

The Cloud Security Alliance (CSA) [3] and Snyk [2] have

both emphasized the challenges of permission management,

secure CI/CD pipelines, and maintaining function - level

observability. These studies highlight how ephemeral

execution and micro - permissioning complicate auditing and

security enforcement. However, they often remain at the level

of conceptual guidance and lack implementation - level

validation in real - world systems. Furthermore, most do not

walk through detailed remediation strategies, leaving

practitioners without clear, actionable blueprints for

mitigating risks.

Academic contributions remain limited. Some papers model

threat landscapes and propose automated policy - generation

techniques, while others suggest serverless - specific intrusion

detection methods. Yet most published work lacks hands - on

walkthroughs of fixing real - world serverless security issues

within a specific provider ecosystem. This aligns with

Hendrickson et al. [6], who argue that while serverless

architectures reduce deployment friction, they can also

obscure architectural complexity and increase long - term

maintenance burdens.

This paper distinguishes itself by embedding security

recommendations within an actual deployment lifecycle,

Paper ID: MS2008134043 DOI: https://dx.doi.org/10.21275/MS2008134043 1612

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

mapping misconfigurations to their operational impact, and

applying concrete mitigation strategies using tools available

to any AWS development team.

3. Threat Models

The shift to serverless architectures introduces a reorientation

of attack vectors, where traditional VM - level concerns like

patching or open ports give way to configuration - based

exploits and inter - service abuse. The security landscape of

serverless applications diverges from traditional models due

to their ephemeral nature, fine - grained event triggers, and

cloud - native service integration. The primary threats

observed in this case study fall into the following categories:

1) Over - Permissioned IAM Roles: Developers often

grant broad IAM permissions to functions for

expedience, especially during rapid prototyping. These

wildcard (*) actions create an expansive attack surface—

if a single function is compromised, it could potentially

read from or write to unintended AWS services, such as

S3 buckets, databases, or even modify IAM

configurations themselves. Baldoni [8] notes that

ephemeral compute layers introduce systemic risks often

overlooked in static assessments.

2) Public API Exposure: API Gateway allows direct

public access to Lambda functions via RESTful or HTTP

interfaces. When authentication is not enforced (e. g., via

Cognito or JWT), attackers can enumerate endpoints,

inject malicious payloads, or initiate denial - of - wallet

attacks by triggering resource - intensive functions

repeatedly.

3) Third - Party Package Vulnerabilities: Serverless

functions typically bundle external packages to handle

application logic, HTTP parsing, and database access.

Dependencies like lodash, moment, or axios may

introduce known vulnerabilities if not pinned to secure

versions. Since functions are redeployed frequently, this

risk is amplified if scanning is not automated.

4) Event Injection & Misrouting: Serverless applications

are inherently reactive, responding to S3 uploads,

DynamoDB changes, or SNS messages. Improperly

validated event payloads can exploit business logic

flaws. For instance, an attacker could craft an S3 event

that manipulates metadata, triggering unintended

Lambda behavior or causing data corruption.

5) Invisibility and Logging Gaps: Unlike traditional

monoliths, serverless functions provide little runtime

feedback unless explicitly instrumented. Without tools

like CloudWatch Logs, AWS X - Ray, or third - party

platforms, teams lack insight into invocation patterns,

performance anomalies, or indicators of compromise.

6) Data Leakage via Misconfigured Storage: Resources

such as S3 buckets or DynamoDB tables may be

inadvertently exposed due to permissive policies.

Sensitive data, access tokens, or user metadata can be

accessed if the access boundaries are not tightly defined

at the role and resource level.

This threat landscape demonstrates that serverless security is

less about defending infrastructure and more about defending

configuration, workflow integrity, and identity relationships.

Each of these threats, though individually impactful, often

compounds in real systems—highlighting the need for

layered, defense - in - depth strategies at the function, API,

and cloud policy levels.

4. Serverless Architecture

The application at the center of this case study was architected

using a collection of AWS - managed services to support a

stateless, event - driven workload. The core business logic

resided in AWS Lambda, written in Node. js, and was invoked

via Amazon API Gateway, which exposed HTTP endpoints

to external clients. Authentication was handled through

Amazon Cognito, which issued JSON Web Tokens (JWTs)

for API authorization. Data persistence was implemented

using Amazon DynamoDB, while Amazon S3 served as a

storage layer for static content and event - triggering uploads.

For monitoring and visibility, the system used Amazon

CloudWatch and AWS X - Ray, and application dependencies

were regularly scanned using Snyk [2] for known

vulnerabilities.

Upon auditing the system, several security weaknesses

became apparent. The IAM roles assigned to Lambda

functions were overly permissive, often granting full access

to all S3 resources via s3: * actions. This elevated privilege

model significantly increased the blast radius of any potential

compromise in violation of IAM best practices [4].

Additionally, several API Gateway endpoints were exposed

without authentication or throttling controls, rendering the

application susceptible to unauthorized access and brute -

force attacks. The use of outdated and vulnerable third - party

libraries, such as older versions of popular utility packages,

introduced critical dependency risks, including the possibility

of remote code execution via published CVEs. Secrets such

as database credentials and token signing keys were

embedded in plaintext within environment variables, posing a

risk of accidental exposure or misuse. Finally, the application

suffered from a lack of comprehensive logging and

observability, with several Lambda function errors not being

captured or forwarded to a centralized logging system,

making root cause analysis and anomaly detection difficult.

These observability gaps reflect challenges described by

Jackson and Tam [9], who emphasize the need for distributed

tracing and centralized telemetry in ephemeral environments.

To address these security gaps and harden the architecture

against abuse, a series of targeted remediations were applied

across access control, observability, and deployment hygiene.

To further enhance resilience and scalability, the deployment

process itself was fortified through a secure CI/CD pipeline

integrated with AWS CodePipeline, GitHub Actions, and

AWS CodeBuild. Each commit triggered automated security

and quality gates—including static code analysis using

ESLint and dependency scanning with Snyk CLI. Build

artifacts were stored in versioned S3 buckets with server - side

encryption (SSE - S3) and access logging enabled.

Deployment roles were restricted using IAM conditions tied

to the source repository and job status, reducing the blast

radius in case of credential leakage.

For runtime defense, Amazon GuardDuty and AWS

CloudTrail were configured to monitor unauthorized API

activity. All Lambda functions were wrapped with structured

logging middleware that captured request metadata,

Paper ID: MS2008134043 DOI: https://dx.doi.org/10.21275/MS2008134043 1613

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

execution time, and error traces, making it easier to trace

attack vectors or performance issues post - deployment. To

reduce latency in tracing, AWS X - Ray was augmented with

custom subsegment annotations, enabling targeted

investigation of specific code paths or services such as

DynamoDB read/write failures.

The team also implemented periodic access audits using AWS

Access Analyzer and custom scripts that flagged permission

changes or escalations. Unused IAM roles and Lambda

functions were automatically reported via a scheduled

CloudWatch Event rule. Secrets Manager rotation policies

ensured that credentials—such as database tokens or API

keys—were refreshed regularly without manual intervention.

These layered enhancements not only addressed immediate

misconfigurations but also embedded security into the

application’s operational lifecycle—extending protection

beyond initial deployment and aligning with AWS's

principles of continuous assurance.

Code hygiene was improved by enforcing strict dependency

pinning through package - lock. json, ensuring consistent

builds and preventing unintentional upgrades to vulnerable

packages. IAM policies were refactored such that each

Lambda function was assigned a role tailored to its specific

access needs—for example, limiting S3 access to read - only

operations within a defined bucket prefix. At the edge, OAuth

2.0 - based JWT authorization was enforced using Cognito

user pools, ensuring only verified users could access protected

API routes. Snyk [2] was integrated into the CI/CD pipeline

to enforce build - time vulnerability checks. Secrets

management was migrated to AWS Secrets Manager,

enabling encrypted storage, controlled access, and automatic

rotation of sensitive credentials. Observability was

significantly enhanced by enabling structured logs and

distributed tracing across all functions, with metrics

aggregated into CloudWatch dashboards and GuardDuty

configured to alert on anomalous activity patterns.

These improvements reinforced the principle that security in

serverless environments must be treated as a first - class

architectural concern and also align with the AWS Well -

Architected Framework – Serverless Lens [5], which

emphasizes least privilege and observability. By embedding

controls into identity management, CI/CD pipelines, and

runtime monitoring, the application transitioned from a

prototype - level configuration to a production - grade,

hardened deployment—demonstrating that strong security

practices can coexist with the agility of serverless computing.

5. Conclusion

Securing serverless applications requires developers to shift

their focus from infrastructure hardening to the precise

configuration of service relationships, permissions, and event

behaviors. As Baldoni [8] highlights, such systems introduce

architectural risks that require proactive, design - level

security interventions. This case study illustrates how even

well - intentioned implementations can expose critical

resources through seemingly minor oversights.

Misconfigured IAM roles, unauthenticated APIs, or stale

dependencies can serve as the point of entry for attackers in

systems that otherwise have no open ports or long - running

processes.

The findings here underscore the importance of treating

security as a continuous concern—one woven into CI/CD

pipelines, architectural decisions, and runtime monitoring

practices, emphasizing that cloud - native architectures must

still be grounded in rigorous security practices. Organizations

must invest in automation and principle - driven design,

enforcing least privilege, validating events at all trust

boundaries, and maintaining observability through logs and

telemetry.

While the specifics of this case are grounded in AWS, the

principles extend to any serverless or event - driven

architecture. As the industry shifts further toward ephemeral,

micro - permissioned systems, the rigor of configuration and

discipline of architectural security will determine whether

these systems remain agile and secure. As serverless adoption

accelerates, organizations will need to embed security

governance into the architectural fabric, not merely the

deployment pipeline. Embedding security at the architectural

layer ensures that scalability and speed do not come at the cost

of resilience—making security a core enabler of innovation

rather than a reactive checkpoint.

Looking ahead, organizations that embed architecture - aware

security from the start will be best positioned to harness the

full potential of serverless technologies—securely, scalably,

and sustainably.

6. Future Work

As serverless architectures continue to mature and scale, new

opportunities emerge for advancing their security posture

beyond configuration hardening. Future work may explore

the implementation of Zero Trust principles in event - driven

systems, where trust boundaries are continuously evaluated at

each function invocation and across service integrations. This

approach would help prevent lateral movement and enforce

stricter identity - based segmentation.

Another promising area is the use of machine learning for

anomaly detection in serverless environments. Inspired by

architectures like TensorFlow [7], future implementations

may leverage telemetry - enhanced ML models. By analyzing

execution patterns, timing anomalies, and payload structures,

ML models could identify behavioral deviations indicative of

misuse or compromise—especially valuable in high - volume,

ephemeral compute scenarios where traditional detection

methods fall short. Such models could also be paired with

serverless - specific runtime agents to enrich detection with

low - latency telemetry, reducing response times for emerging

threats. Future serverless runtimes may adopt introspection

techniques akin to those proposed by Garfinkel and

Rosenblum [10].

Additionally, expanding the security strategies in this case

study into cross - cloud comparisons could reveal provider -

specific gaps and strengths. Investigating serverless security

patterns across AWS Lambda, Azure Functions, and Google

Cloud Functions would support a broader understanding of

cloud - agnostic best practices.

Paper ID: MS2008134043 DOI: https://dx.doi.org/10.21275/MS2008134043 1614

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 8, August 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Finally, evaluating open - source security tooling—such as

Open Policy Agent (OPA), Falco, or custom Lambda

extensions—may offer cost - effective and extensible

alternatives to proprietary AWS features, enabling wider

adoption and community - driven security evolution. As the

ecosystem matures, a taxonomy of standardized benchmarks

for serverless security—akin to OWASP’s Top 10 or CIS

benchmarks—could further support platform - agnostic

auditing and control validation.

References

[1] OWASP Foundation, “OWASP Serverless Top 10, ”

OWASP Project, 2018. [Online]. Available: https:

//owasp. org/www - project - serverless - top - ten/

[2] Snyk Ltd., “Serverless Security: Risks in the Wild, ”

Snyk Research Reports, 2019. [Online]. Available:

https: //snyk. io/blog/serverless - security - risks - in -

the - wild/

[3] Cloud Security Alliance, “The Treacherous Twelve:

Cloud Computing Top Threats, ” CSA Reports, 2016.

[Online]. Available: https: //cloudsecurityalliance.

org/artifacts/treacherous - twelve - cloud - computing -

top - threats/

[4] Amazon Web Services, “IAM Best Practices, ” AWS

Documentation, 2020. [Online]. Available: https:

//docs. aws. amazon. com/IAM/latest/UserGuide/best -

practices. html

[5] Amazon Web Services, “AWS Well - Architected

Framework, ” AWS Whitepapers, 2020. [Online].

Available: https: //docs. aws. amazon.

com/wellarchitected/latest/framework/

[6] S. Hendrickson, B. Bahr, and S. St. Amant, “Serverless

computing: One step forward, two steps back, ” in

Proc.2016 IEEE Int. Conf. on Cloud Engineering

(IC2E), pp.176–185, 2016.

[7] M. Abadi et al., “TensorFlow: A system for large - scale

machine learning, ” in Proc.12th USENIX Symposium

on Operating Systems Design and Implementation

(OSDI), 2016, pp.265–283.

[8] N. Gruschka, M. Jensen, L. Iacono, and C. Mülle,

“Security and privacy in cloud computing, ” Future

Generation Computer Systems, vol.28, no.6, pp.1328–

1333, 2012.

[9] R. Chandramouli and S. Rose, “Security Considerations

for Microservices Architecture, ” NIST Special

Publication 800 - 204, 2019.

[10] T. Garfinkel and M. Rosenblum, “A virtual machine

introspection based architecture for intrusion

detection, ” in Proc. NDSS, 2003.

Paper ID: MS2008134043 DOI: https://dx.doi.org/10.21275/MS2008134043 1615

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://owasp.org/www-project-serverless-top-ten/
https://owasp.org/www-project-serverless-top-ten/
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/
https://docs.aws.amazon.com/wellarchitected/latest/framework/

