Mechanism of Action of Hepatotoxicity Drugs

M. Meghana¹, K. Krishna²

Department of pharmacy, AM Reddy Memorial College of Pharmacy, Petlurivaripalem, Narasaraopet, India

Abstract: Liver is the largest gland functioning as storage, manufacturing and biotransformation process. Due to increase exposure of drugs like anti-tubercular, anti-convulsants, NSAIDS, antibiotics etc., causes liver damage like elevation in serum transamines, depletion of glutathione level, oxidative stress, formation of reactive metabolites by cytochrome p450 enzyme, depletion of adenosine triphosphate level, hypersensitivity reactions, sometimes the cause is not known (idiosyncratic toxicity) and hence many scientist and researchers have reported hepatoprotectants drugs.

Keywords: biotransformation, mechanism of hepatotoxicity drugs, hepatoprotectants drugs

1. Introduction

Liver is a largest gland in human body, situated in right side of upper abdominal cavity. Hepatocytes play vitals function such as production of bile, metabolism of fats, carbohydrates and protein, enzymes activation, storage of glycogen, vitamins, and minerals, synthesis of plasma proteins such as albumin and clotting factors etc. The main function is drug metabolism and excretion. here biotransformation of drugs occurs generally biotransformation process involves 2 phases

Phase-1 – conversation of parent drug to polar metabolites, here oxidation, reduction, hydrolysis. It mainly involving of p450 enzymes

Phase-2 – endogenous substrate forms a polar conjugate, here glucuronidation, acetylation, conjugation, sulfation, methylation, water conjugate. Theyare catalysed by glutathione-s-transferase, UDP-glucuronosyl transferase and n-acetyl transferase.

2. Mechanism

In liver generally metabolism of drug there is breakdown of lipophilic compound to watersoluble substance and then it excreated out of the body. Sometimes during this biotransformation of drugs it leads formation of reactive metabolite, these metabolite bind to nucleic acids, cellular protein and lipids and then it lead to DNA damage, loss of protein function and lipid peroxidation

Sometimes due to formation of reactive metabolites there is activation adaptive immune response, in liver the Kupffer cells and natural killer Tcells which protect from viral and bacterial toxins and also xenobiotics due to activation of immune system and then lead to stress in endoplasmic reticulum and mitochondria some drugs activates these immune cells and forms proinflammatory mediators such TNFalpha, interferone beta and gamma.

Some drugs also causes hypersensitivity reactions such as skinrash, fever, eosinophila due todetection of antibodies against hepatic proteins

Due to alteration in DNA expression which to genetic polymorphism it inhibit the membrane transporters of drugs and finally drug resistance association occurs and therefore increase in bilirubilin level. Some drugs also alter activity biliary transporter bile salt excretory pump which lead to cholestasis.

Normally liver mitochondria are essential in hepatocyte survival as mediator for apoptosis and necrosis. Some dugs causes mitochondria injury due to activation of c-jun-N-terminal kinase(JNK) which is death pathway. Eg: acetaminophen.

Glutathione (natural detoxifier) shows antioxidant effect which is produce in mitochrondria plays important roles in cellular defence, it improve protein, enzyme and bilirubin levels. But due depletion of this glutathione level it leads increase in serum liver enzymes such ALT, ALP, and alkaline phosphates than the normal limit also cause liver damage.

Some drugs cause disruption of calcium homeostasis which causes depletion of adenosine triphosphate levels and finally leads cell rupture and cell breakdown.

Heptotoxicity Drugs			
Drug	Mechanism of Action	Long Term Usage	
ANTIBIOTICS	These drugs mainly increases toxic metabolites by	Chronic hepatic injury	
Amoxicillin/clavulanate	cytochrome p450 enzymes	Fulminant hepatitis	
Trimethoprim/sulfamethoxazole		Granuloma in liver	
Fluroquinolones		Microvesicular steatosis	
Macrolides		Vanishing bile duct syndrome	
Minocycline			
Nitrofurantoin			
Clarithromycin			
ANTIEPILEPTICS	These drugs mainly increases transaminase	Acute hepatic injury	
Phenytoin	enzymes(aminotransferase, lactic dehydrogenase,	Cholestasis	

Volume 9 Issue 7, July 2020 <u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Carbamazepine	alkaline phosphate, bilirubin, prothrombine)	Granuloma in liver
Lamotrigine		Vanishing bile duct syndrome
ANTI TUBERCUI AR	These drugs shows asymptomatic transaminase	Acute hepatic injury
Rifampicin	elevations and also forms toxic metabolites by	Chronic hepatic injury
Isoniazid	cytochrome p450 enzymes in liver microsomes	Granuloma in liver
Pyrazinamide	cytoentonic p+50 enzymes in river interosonies	Fulminant henatitis
NSAIDS	These drugs shows elevations of serum transamines	Acute hepatic injury
Acetaminophen	and alkaline phosphate and also depletion of	Granuloma in liver
Diclofenac	glutathione level and lipid peroxidation	Necrosis of cetrilobular hepatocytes
Ibuprofen	grutumone lever une npre peroviduiton	
Naproxen		
HYPERLIPIDEMIC DRUGS	These drugs mainly impairment of bile acid	Cholestasis
Statins	transport protein, reactive metabolite of p450	
Niacin	enzymes.	
Fibrates	, y see	
ANAESTHETIC AGENTS	These drugs mainly forms reactive metabolite by	Hepatic centrilobular necrosis
Halothane	cytochrome p450 enzymes and later free radical	F
Chloroform	generation occurs.	
Isoflurane	<i>B</i>	
Enflurane		
Desflurane		
Nitrous oxide		
IMMUNOSUPPRESSIVE	These drugs cause transaminase elevations . some	Macrovesicular steatosis
Gold salt	cases increase methyltransferase which leads to	
Azathioprine	hypermethylation	
Methotrexate	51 · · · · · · ·	
Infliximab		
Azathioprine /6-mercaptopurine		
ANTI CONVULSANTS	These drugs act on mitochondrial coenzyme	Acute hepatic injury
Valproic acid	depletion which involves in beta-oxidation of fat in	Microvesicular steatosis
· ····································	body	
ANTI PSYCHOTIC DRUGS	These drugs inhibits beta-oxidation of fat, reactive	Heptocellulatr cholestasis
Chlorpromazine	metabolite of p450 enzyme and asymptomatic mild	Microvesicular steatosis
	transient reversible elevations of liver enzymes	
ANTI THYROID DRUGS	These drugs cause increase of transaminase,	Cholestatic heptasis
Propylthiouracil	alanine aminotransferase, asparate	Cytotoxic hepatasis
Methimazole	aminotransferase, alkaline phosphate, gamma	
	glutamyltransferase.	
Corticosteroids/ Glucocorticoids and	Generally these glucocorticoids promote glycogen	Steatosis
Anabolic Androgenic Drugs	storage in liver, but due this agents steatosis is	Non alcoholic fatty liver
	observed in adults and children	_
ANTI HYPERTENSIVES	These drugs cause asymptomatic increase of serum	Acute hepatic injury
Hydralazine	transaminase, and they also convalently inhibits	Microvesicular steatosis
Metaprolol	glutathione, ascorbic acid, superoxidedismutas,	Granuloma in liver
	therefore release free radicals	Cholestasis
ANTI FUNGAL DRUGS	This drugs decreases glutathione and also	Acute cholestasis
Ketoconazole	convalently bind to hepatic proteins in microsomes	
	and also increase of serum transaminases	
ANTI COAGULANTS	These drugs increase serum transaminase which	Acute liver injury
Heparin	leads to the damage of hepatocytes by reactive	Massive hepatocellular necrosis
	metabolites by p450 enzymes , decrease of	Cholestasis
	adenosine triphosphate.	
PLATELET INHIBITOR	These drugs cause detoxification of glutathione s	Hepatic fibrosis
Ticlopidine	transferase enzyme and also forms CYP2C9	Chronic hepatic injury
	reactive metabolite which convalently binds to	
	macromolecules and forms free radicals	
ANTI NEOPLASTIC	These drugs directly cause hepatic toxicity due	Nodular regenerative hyperplasia
Thioguanine	releasing of toxic metabolite.	Hepatic vascular injury
Cyproterone		Veno occlusive disease
Tamoxifen		
Imatinib		
ANTI MALARIAL DRUGS	These drugs forms a reactive metabolite	Acute hepatic injury
Amodiaquine	iminoquione by peroxide and microsomes and then	Jaundice
	lead to reversible bind to proteins and finally cell	
	1 2	
	function decreases	
MUSCLE RELAXANT	function decreases These drugs causes increase in transaminases	Acute cholestasis
MUSCLE RELAXANT Chlorzoxazone	function decreases These drugs causes increase in transaminases	Acute cholestasis

Volume 9 Issue 7, July 2020

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ANTI RETROVIRAL DRUGS	These drugs due to decrease mitochondria activity,	Microvesicular steatosis
Ritonavir	direct toxicity of liver, hypersensitivity reactions	Acute fatty liver
Indinavir	which leads increase of liver enzymes	
nelfinavir		
lamivudine		
tenofovir		
zidovudine		
didanosine		
nevirapine		
efavirenz		

Pharmacotherapy of hepatotoxicity

- Reduces the dose of medications
- Life style modifications such as limit alcohol,losing weight,careful monitoring of liver function.
- IV administration of carnitine (which enhances beta oxidation of fat)
- Diuretics -for fluid accumulation
- Nutrient supplementation taurine, arginine, polyenylphosphatidylcholine, alphalipoic acid, vitamin-B, antioxidant vitamins (ADE), methylsulfonylmethane, s- adenosyl methionine, methionine.
- Hepatoprotective drugs silymarin, membrane stability drugs, anti-lipid peroxidative, anti-oxidative, anti-inflammatory, immune modulative drugs.
- Glycyrrhiza glabra, picrohiza kurro, Phyllanthus amarus shows good hepatoprotective effect.

3. Conclusion

Normally liver is the primary biotransforming organ, because all the drugs are metabolised and excreted (detoxification). It is also potentially vulnerable to the toxic action of xenobiotic substances but too much of medication intake the liver damage occur. So to control liver damage hepatoprotectants drugs are prescribed but idiosyncratic cause liver transplantation occurs. This hepatoprotectants shows antioxidative effect and reduces the severity of liver damage.

References

- [1] Mechanism of drug induced liver injury by holtMP, aapsJ 2006
- [2] Review on hepatoxicity by drugs-the most common implicated agents. (international journal of molecularscience)feb 2016
- [3] EASLclinical practice guideliness- drug induced liver injury in journal of hepatology
- [4] www.elsevier.com/locate/jhep mitochondrialhepatopathies
- [5] http://livertox:nlm.nih.gov
- [6] Drug bioactivation and protein adduct formation in the pathogenesis of drug induced toxicity (chem.biol.interact2011)
- [7] leeWM(2003)drug induced hepatoxicity NEnglJMed349
- [8] Meister.A(1998) glutathione metabolism and its selective modifications
- [9] https://www.ncbi.nlmnih.gov>heptotoxicity
- [10] https://doi.org/10.1111/j.1440-1746.1997.tb00507.x drug induced heptatic injury (28 jun 2008) review on journal of gastroenterology and hepatology /volume-12

Volume 9 Issue 7, July 2020

www.ijsr.net

DOI: 10.21275/SR20724180919

1469

- [11] Lake bakaar.g,br.med.j,scheuer.p hepatic reactions assiociated with ketoconazole
- [12] Liver injury associated with ketonazole Greenblatt hk
- [13] https://www.cnn.com>expert.q.a
- [14] Reviewon plants having hepatoprotective activity by bhragualDD, sharmaPK, gargVK, kumar.N(2010)