
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 7, July 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Microservices: Using Distributed Tracing for

Monitoring & Troubleshooting

Aditya Shrivatri

MS, Software Engineering, University of Detroit Mercy, Detroit, Michigan, USA

Abstract: Modern applications can be found everywhere today. Distributed microservices, cloud-native, managed resources, and

serverless are parts of this complex whole. But how can we keep track of so many elements in our production environments? In these

distributed environments, microservices communicate with each other in different ways: synchronous and asynchronous. Distributed

tracing has become a crucial component of observability both for performance monitoring and troubleshooting. This paper articulates

the instrumentation, distributed tracing, and modern distributed applications.

Keywords: Microservice; Monitoring and Distributed tracing

1. Introduction

Auto scaling based on the load fluctuations is one of the

biggest benefits of using micro service architecture [1] [4].

To gain the benefits of auto scaling the services have to be

segregated from one another using the clear isolation

techniques. Not just the services but also the databases should

be isolated from one another. This has given the way to

Database per service pattern as proposed by researchers like

Chris Richardson and others [2][3]. With the distributed

micro service architecture, it helps not in the separation of

concerns but also in approaching the technical and design

challenges involved in each service and database as a totally

independent application. Though it is very helpful design

pattern, this level of independence can cause issues in other

areas. The database transaction management is one big

challenge faced by the applications working on distributed

microservice framework [5]. Researches likeChaitanya K

Rudrabhatla [6] and others have provided solutions for

solving these complex problems related to distributed

transaction roll backs using the saga patterns [7]. There could

be other logical issues in routing, health checks and

management, including service exposition (API), inter-

service communication, and infrastructure deployment

Tracing is a way of profiling and monitoring events in

applications. These problems were addressed by researchers

like Santos, Nuno & Ferreira, Nuno & Pereira, Manuel &

Salgado, Carlos & Morais, Francisco & Melo, Mónica &

Silva, Sara & Martins, Raquel & Pereira, Marco &

Rodrigues, Helena & Machado, Ricardo [8]. However, even

with all the research and advancements, there still are many

areas which can be problematic with micro service

frameworks. Isolation of failure and narrowing down the area

of issue is one of the biggest concern for the developers and

programming community. This problem is further aggravated

by the distributed design where services can spread across

multiple containers in the cloud [9]. To solve this problem,

tracing mechanisms can be very helpful. With the right

information, a trace can reveal the performance of critical

operations. How long does a customer wait for an order to be

completed? It can also help to a breakdown of our operations

to our database, APIs, or other microservices.

Distributed tracing is a new form of tracing that adapted

better to microservice based applications. It allows engineers

to see traces from end to end, locate failures, and improve

overall performance. Instead of tracking the path within a

single application domain, distributed tracing follows a

request from start to end.For example, a customer makes a

request on our website and then we update the item

suggestion list. As the request spans across multiple

resources, distributed tracing takes into account the services,

APIs, and resources it interacts with.

2. Automated microservices instrumentation

Exploring distributed traces might sound simple but

collecting the right traces with the right context will require

considerable time and efforts [10]. Let’s follow an example

where we got an e-commerce website that updates our

database with purchases:

In this example, which is not distributed, to create an

interesting trace, we will need to collect the following

information:

Paper ID: SR20716230749 DOI: 10.21275/SR20716230749 1269

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 7, July 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

a) HTTP request details:

 URL

 Headers

 The ID of the user

 Status code

b) Spring Web:

 Matched route and function

 Request params

 Process duration

c) RDS database:

 Table name

 Operation (SELECT, INSERT, …)

 Duration

 Result

To capture this information we can either do it manually

before and after every operation that we make in our code or

automatically instrument it into common libraries.

By “automated instrumentation,” we mean “hooking” into a

module. For example, every time we make a GET request

with “Apache HttpClient,” there will be a listener. It will

extract and store this information as part of the “trace.”

Collecting this information manually using logging is not

recommended since they are not structured well. Using a

more standard way, like OpenTracing, will allow us to filter

out relevant traces. We will also have the option to present

them nicely in many tools. This kind of instrumentation

requires heavy lifting. It involves integrating to our libraries,

as well as constant maintenance to support our dynamic

environments.

3. Standards and Tools

OpenTracing

Microservices standards and tools that can help us to get

started with our first distributed traces. The first pioneer was

OpenTracing, which is a new, open distributed tracing

standard for applications and OSS packages.

Using OpenTracing, developers can collect traces into spans,

and store extra context (data) to each one of them.

Spans can have a relation – `child of` or `follows from`.

These relations can help us get a better understanding of

performance implications.

To trace a request across distributed microservices spans,

we must implement the inject/extract mechanism to inject a

unique “transaction ID.” Then we would extract it on the

receiving service. Note that a request can travel between

microservices in HTTP requests, message queues,

notifications, sockets, and more.

Managed solution

Ultimately, we might want to consider an automated

distributed tracing solution. Epsagon, for example, uses

automated instrumentation to provide microservices

performance monitoring and visualization of requests and

errors in an easier way:

Paper ID: SR20716230749 DOI: 10.21275/SR20716230749 1270

https://epsagon.com/product-overview/
https://epsagon.com/product-overview/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 7, July 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A managed solution for distributed tracing provides the

following benefits:

 Traces are being collected automatically without code

changes.

 Visualizing traces and service maps with metrics and data.

 Query data and logs across all traces.

4. Conclusion

Distributed tracing is crucial for understanding complex,

microservices applications. Without it, teams can be blind

into their production environment when there is a

performance issue or other errors.Although there are

standards for implementing, collecting, and presenting

distributed traces, it is not that simple to do manually. It

involves a lot of effort to get up and running. Leveraging

automated tools or managed solutions can cut down the level

of effort and maintenance, bringing much more value to your

business.

References

[1] S. Newman, Building Microservices. " O'Reilly Media,

Inc.", 2015.

[2] Messina, Antonio & Rizzo, Riccardo & Storniolo,

Pietro & Tripiciano, Mario & Urso, Alfonso. (2016).

The Database-is-the-Service Pattern for Microservice

Architectures. 9832. 223-233. 10.1007/978-3-319-

43949-5_18.

[3] Chris Richardson –

“microservices.io/patterns/data/database-per-service”

[4] Chaitanya K Rudrabhatla. A Systematic Study of Micro

Service Architecture Evolution and their Deployment

Patterns. International Journal of Computer

Applications 182(29):18-24, November 2018.

[5] Elkholy, Mohamed & Elfatatry, Ahmed. (2019).

Framework for Interaction Between Databases and

Microservice Architecture. IT Professional. 21. 57-63.

10.1109/MITP.2018.2889268.

[6] Chaitanya K. Rudrabhatla, “Comparison of Event

Choreography and Orchestration Techniques in

Microservice Architecture” International Journal of

Advanced Computer Science and

Applications(IJACSA), 9(8), 2018.

http://dx.doi.org/10.14569/IJACSA.2018.090804

[7] Pedro Valderas, Victoria Torres, Vicente Pelechano, A

microservice composition approach based on the

choreography of BPMN fragments, Information and

Software Technology, Volume 127,2020,106370,ISSN

0950-5849,https://doi.org/10.1016/j.infsof.2020.106370.

[8] Santos, Nuno & Ferreira, Nuno & Pereira, Manuel &

Salgado, Carlos & Morais, Francisco & Melo, Mónica

& Silva, Sara & Martins, Raquel & Pereira, Marco &

Rodrigues, Helena & Machado, Ricardo. (2019). A

logical architecture design method for microservices

architectures. 145-151. 10.1145/3344948.3344991.

[9] Christian Esposito, Aniello Castiglione, Kim-Kwang

Raymond Choo, "Challenges in Delivering Software in

the Cloud as Microservices", Cloud Computing IEEE,

vol. 3, no. 5, pp. 10-14, 2016.

[10] André Pascoal Bento, “Observing and Controlling

Performance in Microservices”

Paper ID: SR20716230749 DOI: 10.21275/SR20716230749 1271

https://microservices.io/patterns/data/database-per-service
https://dx.doi.org/10.14569/IJACSA.2018.090804

