
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 7, July 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Decomposition Techniques in Distributed Service

Architecture

Mallanna S D

1Assistant Professor, Siddaganga Institute of Technology, Tumakuru, Karnataka, India

Abstract: In this modern era of cloud computing, distributed service design in web applications is quintessential to harness the benefits

of scalability and elasticity. Such design can be achieved either by implementing the service-oriented architecture (SOA) or a fine-

grained micro service architecture (MSA).Defining the boundaries of the services and decomposing them into separate units is a

challenging task in the web service design. Single responsibility principle (SRP) and common closure principle (CCP) are the 2 major

guiding principles which drive the decomposition of the backend into micro services. Services can be logically segregated either by (i)

delineating the sub-domains of the business served and converting each sub domain into a bunch of services grouped together as a

microservice, or (ii) by laying out the major entity model and then building the services related to the capabilities of each entity grouped

together as a microservice. Both these approaches have their own benefits and issues. This paper discusses these approaches by taking

the real-world examples and explains which pattern is suitable under which circumstances.

Keywords: Microservices, Service oriented architecture, Service Decomposition, Single responsibility principle, common closure

principle

1. Introduction

The modern-day web application backend design entails

distributed service architecture. Not long ago all the

applications were built using a monolithic design pattern.

Monolithic systems were easy and convenient to build when

client-server model was one of the most popular designs for

the distributed systems, as explained by Tasneem Salah and

other in their research work [1]. As change is key to the

success of any business, the web applications need to be

changed quickly to handle the needs of the business. Things

started to escalate quickly, and monolithic applications

started to fade. Monolithic systems get more complex to

handle as the size of the application grows as all the code is

stacked in a single unit. They got difficult to debug the

production issues and test the incremental changes. Build

cycles were also significantly longer due to the bulk of code

stacked up as a single unit. These issues have given rise to

the newer design patterns which involved breaking down the

monolith to a more loosely coupled services which was

known as Service Oriented Architecture (SOA). In this

pattern, a web front end, mobile or other third-party callers

can make calls to the distributed backend services. These

calls are handled by Enterprise Service Bus (ESB) which

integrates various application services together over a Bus-

like infrastructure. ESB comes with a embedded service

registry which keeps track of the backend services. ESB

translates the calls coming to it and translates them to the

suitable message type understood by the relevant service in

the backend. Though SOA was a great improvement from

the monolith design, it had it’s own share of issues. Though

the services were delineated in SOA, they needed to be

deployed as a single unit in the form fat application services.

On top of it as examined by researchers like Chaitanya K

Rudrabhatla [2].SOA performs the service routing,

orchestration and business validations at a single central hub

called ESB, which becomes a cumbersome layer as services

grow. To handle these draw backs Micro Service

Architecture (MSA) came into light.

The microservice architecture structures an application as a

set of loosely coupled services. This design greatly helps in

accelerating the software development lifecycle by enabling

the continuous integration, development and deployment

(CI/CD). The biggest advantage of micro services comes

from the fact that it enables the components to be deployed

independently. This greatly simplifies the development,

testing and deployment cycles as the changes are limited to a

smaller region rather than the entire monolith. When this

design is paired up with the cloud environment and

distributed using the smaller containers, the benefits are

enormous. The smaller containers can start and stop quickly,

thus enabling the auto scaling seamlessly. This gives the

elasticity and horizontal scaling capabilities efficiently. But

these benefits are not automatically realized. Instead, they

can only be attained by the careful functional decomposition

of the application into services. Rest of this paper discusses

the techniques to decompose the web application services in

an optimal way.

2. Decomposition of Microservices

While designing the micro services, it should be ensured that

a service must be small enough to be easily developed and

tested. To design the smaller services, the backend

functionality needs to be decomposed into services in an

efficient and reliable way. There are 2 major guiding

principles which can drive the decomposition of services.

Single Responsibility Principle (SRP) is a guiding principle

which defines a responsibility of a class as a reason to

change, and states that a class should only have one reason

to change. It is highly beneficial to apply SRP and design

services that are cohesive and implement a small set of

strongly related functions [3].

The backend web services also be decomposed in a way so

that most new and changed requirements only affect a single

service. That is because changes that affect multiple services

require coordination and more testing, which slows down

development. This is the essence of Common Closure

Paper ID: SR20707003221 DOI: 10.21275/SR20707003221 683

http://www.objectmentor.com/resources/articles/srp.pdf

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 7, July 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Principle (CCP), which is a second guiding principle for

service decomposition which states that classes that change

for the same reason should be in the same package. Perhaps,

for instance, two classes implement different aspects of the

same business rule. This principle states that only one

package should be impacted when a business rule changes.

The section below describes the techniques to implement the

SRP and CCP techniques while implementing the MSA.

3. Domain Driven Design

3.1 Key considerations

Domain Driven Design is an architectural pattern used to

decompose the services by following the common closure

principle (CCP). As per this, all the classes which get

impacted by a chance should be packaged together as a

microservice. Some of the key considerations for this

implementation are –

1) Services must be designed to be cohesive in nature. A

service should comprise of a small set of strongly related

business activities.

2) Each service should be autonomous and be loosely

coupled. Which means in case of a change, it should be

possible to code and deploy the service alone without

impacting anything else.

3.2 Real world example

This architectural pattern can be explained by taking a real-

world industry example. For ex –If you consider an

ecommerce application, the various business functions can

be listed at a high level as –

1) Inventory management.

2) Order management.

3) Payment system.

4) Shipping management.

As per this principle the services should be segregated in

such a way that all the functionality related to the business

module should be packaged an independent micro service as

shown in Figure 1 below. This design helps because the

changes can be segregated and deployed individually.

However, it has its own issues as listed below.

Figure 1: Domain driven design for e-commerce application

3.3 Challenges with Domain Driven model

Though the domain driven model helps in reducing the

impact of change percolating into services dealing with other

business functionality, it has some challenges which need to

be carefully dealt with. Here are some of the key challenges-

1) Sometimes the microservice dealing with a sub domain

might be too heavy depending on the functionality

involved. So further break down of the modules might be

necessary. Decomposing a single sub domain to multiple

services might complicate the data queries and also pose

challenges in persisting the transactions.

2) When the services become heavy it might have a

negative impact on throughput and latency of the service

[4]

3) When the sub domain is broken into micro domains, it

calls for a decentralized framework for microservice

coordination [5] [6]

4) Though a database per service model can be followed to

maintain isolation of services, there still would be a need

to pass the state of entities across services. This might

complicate the database and network design.

4. Entity Driven Design

As an alternative to the above pattern Event driven design is

presented. Entity driven model is a design pattern where

services are based on the entities involved in the business

transaction. In this design, the services are designed around

the activities of the entities. This would let a web application

to be broken down into as many micro services as the

number of major entities involved in the business flow. This

might prove advantageous as the entity states are persisted in

one place and a reactive event driven approach can be taken

to propagate the transactions to other microservices.

However, this has become more of an anti-pattern due to the

following drawbacks.

4.1 Challenges with Entity Driven model

Listed below are some of the shortfalls of the entity driven

model for the decomposition of microservices –

1) It might lead to a granular micro service model which

might become complex to handle[7]

2) Inter service communication becomes a major issue as

this is needed for almost all use cases in this design.

3) It would need a number of orchestrator pattern services

to handle the business logics which span across multiple

entities. Thus, complicating the design further[8]

4) Asynchronous event choreographies might be needed for

transaction propagation even for the flows which deal

with the same business sub-domain.

5. Conclusion

Table 1: Domain driven vs entity driven models

Domain Driven Entity Driven

Clear segregation of services

based on business needs

Business functionality is spread

across orchestrator services.

A business change is limited

to a single service

Small change might cause a

change across multiple services

May cause latency issues in

fat services [9]
Services are fine grained.

Transactions are mostly

bound to the service

Transactions are not bound to

the service

Lower need of interservice

communication

Greater need of interservice

calls.

References

Paper ID: SR20707003221 DOI: 10.21275/SR20707003221 684

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583

Volume 9 Issue 7, July 2020

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[1] Salah, Tasneem & Zemerly, Jamal & Yeob Yeun, Chan

& Al-Qutayri, Mahmoud & Al-Hammadi, Yousof.

(2016). The evolution of distributed systems towards

microservices architecture. 318-325.

10.1109/ICITST.2016.7856721.

[2] Chaitanya K Rudrabhatla. A Systematic Study of Micro

Service Architecture Evolution and their Deployment

Patterns. International Journal of Computer

Applications 182(29):18-24, November 2018.

[3] C. Richardson, "Pattern: monolithic

architecture", Microservices. io, 2019.

[4] Jayasinghe M., Chathurangani J., Kuruppu G., Tennage

P., Perera S. (2020) An Analysis of Throughput and

Latency Behaviours Under Microservice

Decomposition. In: Bielikova M., Mikkonen T.,

Pautasso C. (eds) Web Engineering. ICWE 2020.

Lecture Notes in Computer Science, vol 12128.

Springer, Cham

[5] S Newman, Building microservices: designing fine-

grained systems, O’Reilly Media, Inc, 2015.

[6] D. Goel and A. Nayak, "Reactive Microservices in

Commodity Resources," 2019 IEEE International

Conference on Big Data (Big Data), Los Angeles, CA,

USA, 2019, pp. 3658-3665, doi:

10.1109/BigData47090.2019.9006584.

[7] S. Newman, Building microservices: designing fine-

grained systems . O’Reilly Media, Inc., 2015

[8] V. F. Pacheco, “Microservice patterns and best

practices: Explore patterns like cqrs and event sourcing

to create scalable, maintainable, and testable

microservices,” 2018

[9] A. Akbulut and H. G. Perros, "Performance Analysis of

Microservice Design Patterns," in IEEE Internet

Computing, vol. 23, no. 6, pp. 19-27, 1 Nov.-Dec. 2019,

doi: 10.1109/MIC.2019.2951094.

Paper ID: SR20707003221 DOI: 10.21275/SR20707003221 685

