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Abstract: In this paper, a novel geometric object named dualistic wave is established and employed to solve the dilemma of Zeno’s 

paradox. In one period, a dualistic wave is composed of four curved infinitesimal line segments and each of them is equivalent to a flat 

infinitesimal line segment. A dualistic wave can be viewed as an infinitely small wavelike space or an infinitely small flat space; they are 

equivalent. Intuitively, the ingredient of a straight line is obviously an infinitesimal straight line segment. However, it is shown that the 

ingredient can also be viewed as an infinitesimal curved line segment. An infinitesimal line segment is classified into two categories: flat 

infinitesimal line segment and curved infinitesimal line segment. The equivalence between a flat infinitesimal line segment and a curved 

infinitesimal line segment is demonstrated. This is based on the concept of equivalent infinitesimal in calculus. For example, the limit 

0

sin( )
lim 1
x

x

x
  indicates that the curved infinitesimal line segment described by the equation sin( ) ( 0 ,  0 )y x x L L    is 

equivalent to the flat infinitesimal line segment described by the equation  ( 0 ,  0 )y x x L L    . The mathematical 

equations describing dualistic waves constructed by different curved infinitesimal line segments are given.  
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1. Introduction  
 

Zeno’s paradox [1-2] alerts mathematicians and scientists to 

rethink the nature of space and time. Many mathematical 

solutions to this paradox including the use of infinite series 

seemed not to touch the core point Zeno was concerned of , 

and it was pointed out that any solution to ‘hit the point’ of 

Zeno paradox must also make metaphysical sense [2].  

 

In this paper, the proposed solution is based on the point 

that if we follow the line of thinking that insists the 

ingredient of a straight line is an infinitely small straight line 

segment, then we would end up the conclusion that Achilles 

can never catch the tortoise if the start position of the 

tortoise is ahead of that of Achilles. In mathematics, an 

infinitesimal [3-4] is the ingredient of any geometric object 

such as a straight line and a curve, and an infinitesimal is 

defined as an entity so small that is impossible to be 

measured. In this paper the classification of infinitesimal is 

conducted. It is stated that there are two kinds of 

infinitesimal line segments: flat infinitesimal line segment 

and curved infinitesimal line segment. Based on the concept 

of curved infinitesimal line segment, a geometric object 

called dualistic wave is built up, which shows the nature of 

space-time at infinitely small scale. The duality of this 

nature gives rise to a solution to Zeno’s paradox. 

 

2. Flat and Curved Infinitesimal Line 
Segments 

 

In Cartesian coordinate, the mathematical equation y x  

represents a straight line (which is flat), so the equation 

 ( 0 ,  0 )y x x L L     represents a flat 

infinitesimal line segment. And the mathematical equation 

sin( )y x  represents a wave (which is curved), so the 

equation sin( ) ( 0 ,  0 )y x x L L    represents a 

curved infinitesimal line segment. There are many curved 

infinitesimal line segments such as 

tan( ) ( 0 ,  0 )y x x L L    , and 

ln( 1) ( 0 ,  0 )y x x L L     , and they are listed 

in Appendix. 

 

3. Dualistic Wave 

 

Generally, if ( )y f x is a nonlinear function 

and
0

( )
lim 1
x

f x

x
 , then we can use the function 

( )y f x  to construct a dualistic wave. Figure 1 

illustrates this idea. 
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Figure 1: Mathematical description of wave-particle duality based on equivalent infinitesimals 

 

A specific example is that we can use the nonlinear function 

sin( )y x  to construct a dualistic wave because 

0

sin( )
lim 1
x

x

x
 . Figure 2 shows the equivalence between 

the infinitely small curved line segment 

sin( )  0 x L, L 0y x     and the infinitely small 

straight line segment   0 x L, L 0y x    . 

 

Figure 2: Mathematical description of wave-particle duality based on  
0

sin( )
lim 1
x

x

x
  

In Figure 3, the dualistic wave built upon 
0

sin( )
lim 1
x

x

x
  

is plotted and eqs (1) is the system of equations describing 

it. 

 

 

Figure 3: Dualistic wave constructed by 
0

sin( )
lim 1
x

x

x
  
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 (1)     

where 0x  is the root of the equation:  

2
sin( )

4
x x   ,  is the wavelength. The following 

is the derivation of the above eqs (1).  

 

As to the curved line segment OA  in figure 3, the 

following is the mathematical equation describing it  

 

 

To find the mathematical equation describing the curved 

line segment AB  in figure 3, we notice that AB  and 

OA  are symmetric about the straight line AE , and the 

point 
2 2

(  ,  )
8 8

E   ,   is the wavelength of 

the dualistic wave. The coordinates of point 0, 0( )A x y can 

be obtained by considering that it is the cross point of the 

straight line AE  and the curved line OA .   

The mathematical equation for the straight line AE  is 

2 2
(  )= 1 ( )

8 8
y x      which is equal to the 

following:  

2
 =

4
y x             (3) 

Plugging the coordinates of point A  into eq (2) and eq (3) 

results in: 

0 0

2
sin( ) 

4
x x          (4) 

So 0x  is the root of the equation 
2

sin( ) 
4

x x   . 

Point 
0 0(  ,  sin( ) )A x x . 

Consider that there are two points of ( , )P x y  and 

( , )P x y    such that they are symmetric about the straight 

line AE , and ( , )P x y  is on the curved line segment AB  

and ( , )P x y    is on the curved line segment OA . This 

leads to that the midpoint of the straight line segment PP  

is on the straight line AE .  

 

 

That PP  is parallel to OD  gives rise to the following: 

 

 

Based on eq (5) and eq (6), we get the coordinates of point 

( , )P x y    as: 

 

2

4

2

4

x y

y x






   



    


        (7) 

Plugging the coordinates of point ( , )P x y    into eq(2) 

which describes the curved line segment OA  on which 

P  is, we have : 

2 2
sin( )

4 4
x y              (8)  

The above eq(8) is the mathematical equation for the curved 

line segment AB .  

 

To obtain the mathematical equation for the curved line 

segment BC , it is not difficult to see that BC  can be 

formed by manipulating OA : first reflecting OA  with 

respect to the straight line AE , and then shifting it from 

point O  and point B  to form BC . 

 

Based on symmetry, we know that sin( )x y  describes 

the curved line segment which is the mirror image of the 

curved line segment OA  with respect to the straight line 

OA . Then we can shift the curved line segment described 

Paper ID: SR20705231845 DOI: 10.21275/SR20705231845 551 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2019): 7.583 

Volume 9 Issue 7, July 2020 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

by sin( )x y  from O  to B  along the straight line 

OD  to form the curved line segment BC . Because the 

wavelength is  ,
2 2

( , )
4 4

B   . The following 

eq(9) describes the curved line segment BC :  

                            

2 2
sin( )

4 4
x y           (9) 

Point 0 0

2 2
( sin( )  ,   )

4 4
C x x    . 

Now we derive the equation of the curved line segment 

CD  in figure 3. Because 

0 0

2 2
( sin( )  ,   )

4 4
C x x     and the slope of 

the straight line CF  is -1, the equation of the straight line 

CF  is 0 0

2 2
(  )= 1 ( )

4 4
y x x x        that 

is: 

0

2
 + x = 2

2
y x          (10) 

 

We notice that CD  and BC  are symmetric with respect 

to the straight line CF . Consider that there are two points: 

one is ( , )Q x y  on CD ; the other is ( , )Q x y    on 

BC , and they are symmetric with respect to the straight 

line CF . That the midpoint on the straight line segment 

QQ  is on the straight line CF  described by eq (9) 

leads to the following: 

 

 

That the slope of the straight line QQ  is 1 results in: 

 

 

Combining eq(11) and eq(12), we have: 

0

0

2
2

2

2
2

2

x y x

y x x






    



     


         (13) 

Plugging the coordinates of the point Q  into eq (8) due to 

that Q  is on the curved line segment BC  described by 

eq (9),we have: 

 

 

The above eq(13) describes the curved line segment CD . 

 

Now we see that the combination of eq(2), eq(7), eq(9), and 

eq(14) construct a system of equations ( as shown in eqs(1) ) 

to describe the dualistic wave in figure 3. 

 

If we rotate counterclockwise the coordinate system in 

figure 3 through an angle of 45 degrees, we get the 

following figure 4: 

 

Figure 3: Duality wave 

 

Figure 4 The dualistic wave viewed by the observer in the 

line y x  in the coordinate system in figure 3. The 

system of equations describing the wave in figure 4 is the 

following: 

2 2
( ) sin(  ( ) ) 0 / 4

2 2

2 2
( ) sin(  ( ) ) / 4 / 2

2 2 2 2

2 2
( ) sin(  ( ) ) / 2 3 / 4

2 2 2 2

2 2
( ) sin(  ( ) ) 3 / 4

2 2

x y x y x

x y x y x

x y x y x

x y x y x



 
 

 
 

   


    




      




      




      

     (15) 

The following shows the derivation of eqs (15). 
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First we conduct the derivation of the equation of the curved 

line segment OA  in figure 3. For a point, the relationship 

between its coordinates ( , )x y   in figure 3 and its 

coordinates ( , )x y  in figure 4 is described by eq(16) 

because we rotate counterclockwise the coordinate system 

in figure 3 through 45 degree to form the coordinate system 

in figure 4 

cos(45 ) sin(45 )

sin(45 ) cos(45 )

x x

y y

     
         

 

 
       (16) 

Consider that there is a point ( , )P x y  on OA  in figure 

4 and the coordinates of the point are ( , )x y   in figure 3.  

So the following holds according to eq(15): 

  

2 2
 -  

2 2

2 2
 +

2 2

x x y

y x y


 



  


               (17) 

Because ( , )P x y    is on the curved line sin( )y x , 

we have: 

2 2 2 2
sin( )

2 2 2 2
x y x y         (18) 

The above eq(18) describes OA  in figure 4. 

 

Secondly we derive the equation of AB  in figure 3. We 

notice that OA  and AB  are symmetric with respect to 

the straight line 
4

x


 . Consider there is a point 

( , )P x y  on AB  and a point ( , )P x y    is on OA , 

and the two points are symmetric with respect to the straight 

line 
4

x


 . That the midpoint of  PP  is on the straight 

line 
4

x


  results in: 

2 4

x x

y y





  

               (19) 

So the following stands 

2
x x

y y


  


  

              (20) 

Plugging the coordinates of x  and y  in eq(20) into 

eq(18) due to that ( , )P x y    is on OA , we have the 

following: 

2 2
( ) sin( ( ) )

2 2 2 2
x y x y

 
        (21) 

The above eq(21) describes the curved line segment AB in 

figure 4. 

 

Thirdly, we derive the equation of BC  in figure 4. It is 

not difficult to see that BC can be formed by first 

reflecting OA  with respect to the straight line 0y   

and then shifting it from point O  to point B  along the 

straight line 0y  . Since the point ( ,0)
2

B


 , the 

shifted distance is 
2


 and the equation of BC  is the 

following: 

2 2
( ) sin( ( ) )

2 2 2 2
x y x y

 
         (22) 

Fourthly, we derive the equation of CD  in figure 4. We 

notice that BC  and CD  are symmetric about the 

straight line 
3

4
x  , and 

3
(  ,  0 )

4
C  . Consider 

that there are two points of ( , )P x y  and ( , )P x y   . 

( , )P x y  is on CD  and ( , )P x y    is on BC , and 

P  and P  are symmetric about the straight line 

3

4
x  . That the midpoint of PP  is on the straight line 

3

4
x   results in: 

3

2 4

x x

y y






  

               (23)       
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So 

3

2
x x

y y



  


  

              (24) 

Plugging the coordinates of x  and y  in eq(24) into 

eq(22) due to that ( , )P x y    is on BC , we have the 

following:  

2 2
( ) sin( ( ) )

2 2
x y x y           (25) 

The above eq(25) describes the curved line segment CD  

in figure 4. 

 

Now we see that the combination of eq(18), eq(21), eq(22), 

and eq(25) construct a system of equations ( as shown in 

eqs(15) ) to describe the dualistic wave in figure 4. If the 

wavelength   is infinitely small, the wave described by 

eqs(1) or eqs(15) can be thought as both a wave and a 

straight line.  

 

In Appendix, it shows other equivalent infinitesimals in 

addition to 
0

sin( )
lim 1
x

x

x
 . For example we can also 

construct a dualistic wave based on 
0

tan( )
lim 1
x

x

x
 , and 

the corresponding system of equations describing this wave 

is the following: 

2 2
( ) tan(  ( ) ) 0 / 4

2 2

2 2
( ) tan(  ( ) ) / 4 / 2

2 2 2 2

2 2
( ) tan(  ( ) ) / 2 3 / 4

2 2 2 2

2 2
( ) tan(  ( ) ) 3 / 4

2 2

x y x y x

x y x y x

x y x y x

x y x y x



 
 

 
 

   


    




      




      




      

     

(26) 

The system of equations describing a dualistic wave 

constructed based on 
0

1
lim 1

x

x

e

x


  is the following: 

2
(  ( )  )

2

2
(  ( )  )

2 2

2
(  ( )  )

2 2

2
(  ( )  )

2

2
( ) 1 0 / 4

2

2
( ) 1 / 4 / 2

2 2

2
( ) 1 / 2 3 / 4

2 2

2
( ) 1 3 / 4

2

x y

x y

x y

x y

x y e x

x y e x

x y e x

x y e x










 


 

  



 

 

 


    




     




     



     

  

(27) 

 

The system of equations describing a dualistic wave 

constructed based on 
0

1
( 1)

ln( )
lim =1

x

x

a
a

x

 

 is the 

following: 

2
(  ( )  )

2

2
(  ( )  )

2 2

2
(  ( )  )

2 2

2
(  ( )  )

2

2 1
( ) ( 1) 0 / 4

2 ln( )

2 1
( ) ( 1) / 4 / 2

2 2 ln( )

2 1
( ) ( 1) / 2 3 / 4

2 2 ln( )

2 1
( ) ( 1) 3 / 4

2 ln( )

x y

x y

x y

x y

x y a x
a

x y a x
a

x y a x
a

x y a x
a










 


 

  



 

 

 


    



      




     



     


        

(28) 

The system of equations describing a dualistic wave 

constructed based on 
0

1
((1 ) 1)

lim =1

b

x

ax
ab

x

 

 is the 

following: 

b2 1 2
( ) ( ( 1 (  ( ) )  - 1 ) 0 / 4

2 2

2 1 2
( ) ( ( 1 (  ( ) )  -1) / 4 / 2

2 2 2 2

2 1 2
( ) ( ( 1 ( ( ) )  -1) / 2 3 / 4

2 2 2 2

2 1 2
( ) ( ( 1 (  ( ) )  -1) 3 / 4

2 2

b

b

b

x y a x y x
ab

x y a x y x
ab

x y a x y x
ab

x y a x y x
ab



 
 

 
 

   


     




       



       

       








    

(29) 

The system of equations describing a dualistic wave 

constructed based on 
0

( 1 1)
lim =1

n

x

n x

x

  
 is the 

following: 
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n

n

n

n

2 2
( ) ( 1+ ( ) 1) 0 / 4

2 2

2 2
( ) ( 1+ ( ) 1) / 4 / 2

2 2 2 2

2 2
( ) ( 1+ ( ) 1) / 2 3 / 4

2 2 2 2

2 2
( ) ( 1+  ( ) 1) 3 / 4

2 2

x y n x y x

x y n x y x

x y n x y x

x y n x y x



 
 

 
 

   


       


         




        


         


  

(30) 

It is found that if we construct two dualistic waves based on 

0

sin( )
lim 1
x

x

x
  and 

0

arcsin( )
lim 1
x

x

x
  respectively, we 

will find that the two waves are same. It is due to the 

symmetry that sin( )y x  and arcsin( )y x  are two 

mutually inverse functions. The same happens when we 

construct dualistic waves based on 
0

tan( )
lim 1
x

x

x
  and 

0

arctan( )
lim 1
x

x

x
 , 

0

1
lim 1

x

x

e

x


  and 

0

ln(1 )
lim 1
x

x

x


 , etc. 

 

4. Solution to Zeno’s paradox based on 
dualistic wave    

 
Figure 5: Achilles travels along the dualistic wave path and 

the tortoise travels along a straight line path 

 

In figure 5 it is seen that we assume Achilles runs along a 

dualistic wave path and the tortoise along a straight line path, 

then it is possible that Archilles overtakes the tortoise 

without passing the points the tortoise took previously. The 

underlying mechanism of this explanation is the equivalence 

of flat and curved space-times at infinitely small scales. 

 

5. Conclusion 
 

The classification of infinitesimal line segments including 

flat and curved infinitesimal line segments is proposed. A 

novel type of geometric object named dualistic wave is 

given, and it serves as a mathematical tool to reveal the 

equivalence between wavelike and particlelike motions at 

infinitely small scale. The duality of the space-time structure 

at infinitely small scale is demonstrated by dualistic wave 

and it provides a solution to Zeno’s paradox.   
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Appendix 
 

Examples and meanings of equivalent infinitesimals  

(1) 
0

sin( )
lim 1
x

x

x
  reveals that curved line segment 

sin( ),  0 x Ly x    is equivalent to straight line 

segment ,  0 x Ly x    as 0L . 

0

arcsin( )
(2)  lim =1

x

x

x
 reveals that curved line segment 

arcsin( ),  0 x Ly x    is equivalent to straight line 

segment ,  0 x Ly x    as 0L . 

0

tan( )
(3)  lim =1

x

x

x
 reveals that curved line segment 

tan( ),  0 x Ly x    is equivalent to straight line 

segment ,  0 x Ly x    as 0L . 

0

arctan( )
(4)  lim =1

x

x

x
 reveals that curved line segment 

arctan( ),  0 x Ly x    is equivalent to straight line 

segment ,  0 x Ly x    as 0L . 

0

1
(5)  lim =1

x

x

e

x


 reveals that curved line segment 

1,  0 x Lxy e     is equivalent to straight line 

segment ,  0 x Ly x    as 0L . 
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0

ln(1 )
(6)  lim =1

x

x

x


 reveals that curved line segment 

ln(1 ),  0 x Ly x     is equivalent to straight line 

segment ,  0 x Ly x    as 0L . 

0

1
( 1)

ln( )
(7)  lim =1

x

x

a
a

x

 

 reveals that curved line 

segment 
1

( 1),  0 x L
ln( )

xy a
a

      is equivalent 

to straight line segment ,  0 x Ly x    as 0L . 

0

ln( ) log (1 )
(8)  lim =1a

x

a x

x

 
 reveals that curved line 

segment ln( ) log (1 ),  0 x Lay a x      is 

equivalent to straight line segment ,  0 x Ly x    as 

0L . 

0

1
((1 ) 1)

(9)  lim =1

b

x

ax
ab

x

 

 reveals that curved line 

segment 
1

((1 ) 1),  0 x Lby ax
ab

      is 

equivalent to straight line segment ,  0 x Ly x    as 

0L . 

0

( 1 1)
(10)  lim =1

n

x

n x

x

  
 reveals that curved 

line segment .( 1 1),  0 x Lny n x      is 

equivalent to straight line segment 

,  0 x Ly x    as 0L .  
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