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Abstract: Multi Objective optimization is nowadays a word of order in engineering projects and many more sectors. A Pareto outcome 

is an action that harms no one and helps at least one. The aim of this paper is to define a solution concept of Pareto optimality for a 

Multi Objective Quadratic Programming Problem (MOQPP) and design two methods to extract Pareto optimal solution of MOQPP. In 

this paper, the methods of norm ideal point and membership function are used to solve the MOQPP which are effective in getting Pareto 

optimal solution. 
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1. Introduction 
 

Life is about making decisions and the choice of the optimal 

solutions is not an exclusive subject of scientists, engineers 

and economists. Decision making is present in day to day 

life. Edgeworth (1881) was pioneer to define an optimum for 

multi criteria economic decision making problem at King’s 

College, London. In 1896, Pareto, at the University of 

Lausanne, Switzerland, formulated his two main theories, 

Circulation of the Elites and the Pareto optimum: “ The 

optimum allocations of the resources of a society is not 

attained so long as it is possible to make at least one 

individual better off in his own estimation while keeping  

others as well off as before in their own estimation.” Many 

researchers have been dedicated to develop methods to solve 

this kind of problems. Interestingly, solution for problems 

with multiple objectives, also called multi criteria 

optimization or vector optimization are treated as Pareto 

optimal solutions or Pareto front. 

 

In multi-objective programming problem, it is difficult to 

find an optimal solution to achieve the extreme value of 

every objective function, so that the decision maker is 

exploring for the compromise solution. Based on this idea, 

the concepts of Pareto optimal solution and weakly Pareto 

optimal solution are introduced into multi- objective 

programming problem [1]. The main method of solving 

multi-objective programming problem is converting multi-

objective programming problem to single objective 

programming problem and we can get Pareto optimal 

solution or weakly Pareto optimal solution. K. Suga, S. 

Kato, and K. Hiyama discussed structure of Pareto optimal 

solution, presented the analysis process and showed the 

method they proposed is effective at finding an acceptable 

solution for multi-objective optimization problems [2]. B.A. 

Ghaznavi-ghosoni and E. Khorram analyzed the 

relationships between ∈- efficient points of multi-objective 

optimization problem and є -optimal solutions of the related 

scalarized problem and obtained necessary and sufficient 

conditions for approximating efficient points of a general 

multi- objective optimization problem via approximate 

solutions of the scalarized problem [3]. M. D. Monfared, A. 

Mohades and J. Rezaei proposed a new method for ranking 

the solutions of an evolutionary algorithm’s population, and 

the proposed algorithm was very suitable for the convex 

multi-objective optimization problems [4].  

 

Y. Liu, Z. Peng and Y. Tan analyzed the relations among 

absolutely optimal solutions, effective solutions and weakly 

effective solutions of multi-objective programming problem 

[5]. Caramin M. and Dell’olmo describe scalarization 

techniques, ∈- constraints methods, Goal problem, multi 

level programming to solve Multiobjective optimization 

problem (MOOP) [6]. There are a lot of methods of 

converting multi-objective programming problem to single 

objective programming problem. In norm ideal point 

method, for the given weights, the optimal solution of the 

corresponding single objective programming problem is 

Pareto optimal solution of multi-objective programming 

problem. In membership function method, for the given 

weights, the optimal solution of the corresponding single 

objective programming problem is M-Pareto optimal 

solution of multi-objective programming problem, which is 

similar to Pareto optimal solution [7]. O. Britto, F. Bennis 

and S. Caro bring new approach to solve MOOP providing a 

rapid solution for Pareto set if the objective function 

involved are quadratic [8]. G.Zhang and H. Zuo then analyze 

the Pareto solution for convex MOLPP [9]. 

 

In our present study, we have extended the work by 

introducing the methods of Norm-Ideal point and 

Membership function for solving constrained MOOP 

involving quadratic function and discuss the effectiveness of 

the solution. Illustrative examples are used to highlight the 

potentiality. All Pareto optimal solutions and M- Pareto 

optimal solutions can be got through norm ideal point 

method and membership function method for convex Multi 

objective programming problem and Pareto optimal solution 

is equal to M- Pareto optimal solution. For any Pareto 

optimal solution there exist weights such that Pareto optimal 

solution or M- Pareto optimal solution of Multi objective 

programming problem is the optimal solution of the 

corresponding single objective programming problem. 

 

2. Multi-Objective Optimization 
 

Multi-objective optimization is an area of multiple criteria 

decision making that is concerned with mathematical 
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optimization problems involving more than one objective 

function to be optimized simultaneously. 

 

Mathematically, Multi objective decision making problems 

can be expressed as: 

                                                    

𝑀𝑎𝑥 /𝑀𝑖𝑛[𝑓1 𝑥 , 𝑓2 𝑥 , … . , 𝑓𝑘(𝑥)] 
                    s/t                        𝑥 ∈ 𝑋 =  𝑥  𝑔𝑕 𝑥 :  ≥, =
, ≤ 0,   𝑕=1, 2, …, 𝑚 } 

Where,      𝑓𝑗  𝑥 = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑗 ∈ 𝐽 

                 𝑓𝑖 𝑥 = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑖 ∈ 𝐼 
 

The problem consists of n decision variables, m constraints 

and k objectives.  𝑓𝑗  𝑥 , 𝑓𝑖 𝑥   𝑎𝑛𝑑  𝑔𝑕 𝑥  ∀ 𝑖, 𝑗, 𝑕  might be 

linear or nonlinear. 

 

2.1 Multi-Objective Linear Programming Problem:  

 

Mathematically, the Multi-Objective Linear Programming 

Problem (MOLPP) can be defined as:                                       

𝑀𝑎𝑥 𝑓𝑖 = 𝐶𝑖𝑥 + 𝛼𝑖 ,         𝑖 = 1, … , 𝑟 

𝑀𝑖𝑛 𝑓𝑖 = 𝐶𝑖𝑥 + 𝛼𝑖,         𝑖 = 𝑟 + 1, … , 𝑠 

Subject to   𝐴𝑋  ≤=
≥
 𝐵𝑥 ≥ 0 

where x is an n-dimensional vector of decision variables c is 

n-dimensional vector of constants, B is m-dimensional 

vector of constants, r is the number of objective function to 

be maximized, s the number of objective function to 

maximized plus minimized, ( s-r)  is the number of objective 

that is to be minimized, A is a (𝑚 × 𝑛) matrix of 

coefficients all vectors are assumed to be column vectors 

unless transposed, 𝛼𝑖(𝑖 = 1, . . 𝑠)  are scalar constants, 

𝐶𝑖𝑥 + 𝛼𝑖,         𝑖 = 1, … , 𝑠   are linear factors for all feasible 

solutions. 

 

2.2 Multi-Objective Quadratic Programming Problem 

 

Mathematically the multi objective quadratic programming 

problem (MOQPP) can be stated as: 

 𝑀𝑎𝑥  𝐹𝑟 =
1

2
 𝑥𝑇𝑃𝑟  𝑥 + 𝐶𝑟

𝑇𝑥 

𝑀𝑖𝑛  𝐹𝑠 =
1

2
 𝑥𝑇𝑃𝑠  𝑥 + 𝐶𝑠

𝑇𝑥 

Subject to       𝐴𝑥  ≤=
≥
 𝑏              𝑥 ≥ 0 

Where r is the number of objective function to be 

maximized, s is the number of objective function to be 

maximized and minimized and (s-r) is the number of 

objective function to be minimized. Here P is a  𝑛 × 𝑛  

symmetric matrix of coefficients, x is an n-dimensional 

vector of decision variables, C is the n-dimensional vector of 

constants, b is m-dimensional vector of constants. A is 

 𝑚 × 𝑛  matrix of coefficients. All vectors are assumed to 

be column vectors unless transposed. 

 

2.3 Convex Multi-objective Optimization Problem 

 

A convex multi-objective optimization problem can be 

stated as follows: 

  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  [𝑓1 𝑥 , 𝑓2 𝑥 … . . 𝑓𝑚(𝑥)]
Subject to             𝑔𝑗  𝑥 ≤ 0;    𝑗 = 1, 2, … 𝑝 

where x is an n -dimensional vector of  decision  variables, 

f1 (x), f2 (x),.., fm (x) are convex functions defined on X, 

and X ={x | g j (x) ≤ 0;  j = 1, 2,.., p} is convex set. The given 

Problem is called convex multi- objective programming 

problem. 

  

3. Pareto Optimal Solution 
 

A vector 𝑥∗ ∈ 𝑊 is said to be Pareto optimal for a multi-

objective problem if all other vectors 𝑥 ∈ 𝑊 have a higher 

value for at least one of the objective function 𝑓𝑖 , with  i = 

1 , . .. ,  n, or have the same value for all the objective 

functions.  We have the following definitions: 

 A point  𝑥∗ is said to be a weak Pareto optimum or a weak 

efficient solution for the multi-objective problem if and 

only if there is no 𝑥 ∈ 𝑊 such that   

𝑓𝑖 𝑥 < 𝑓𝑖 𝑥
∗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈  1, … , 𝑛 . 

 A point  𝑥∗  is said to be a strict Pareto optimum or a strict 

efficient solution for the multi-objective problem if and 

only if there is no 𝑥 ∈ 𝑊  such that  

𝑓𝑖 𝑥 ≤ 𝑓𝑖 𝑥
∗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈  1, … , 𝑛  with at least one strict 

inequality. 

 Construct a function for convex multi-objective 

programming problem(MOPP) 

𝛼𝑖 𝑓𝑖 𝑥  =
𝑓𝑖 𝑥 − 𝑓𝑖

1

𝑓𝑖
∗ − 𝑓𝑖

1 ,   𝑖 = 1, 2, …𝑚;   𝑓𝑖
∗

= min
𝑥∈𝑋

𝑓𝑖 𝑥 , 𝑓𝑖
1 = max

𝑥∈𝑋
𝑓𝑖(𝑥) 

x
*
  X  is said to be a M-Pareto optimal solution of 

convex MOPP, if      and only if there does not exist 

another x  X    such that  𝛼𝑖  ( 𝑓𝑖(x))   𝛼𝑖  ( 𝑓𝑖  (x
*
)), i  1, 2, 

, m, with strict inequality holding for at least one i. 

 x
*
  X  is said to be a Weakly M-Pareto optimal 

solution of convex MOPP, if and only if there does not 

exist another x  X  such that   

𝛼𝑖  (𝑓𝑖  (x))  𝛼𝑖  ( (𝑓𝑖(x
*
)), i  1, 2, , m 

 

The image of all the efficient solutions is called Pareto front 

or Pareto curve or surface. The shape of the Pareto surface 

indicates the nature of the trade-off between the different 

objective functions. An example of a Pareto curve is showed 

in Fig. 3.1, where all the points between (𝑓2 𝑥  , 𝑓1(𝑥 ))  and 

(𝑓2 𝑥  , 𝑓1(𝑥 ))  define the Pareto front. These points are 

called non-inferior or non-dominated points. 

 
Figure 3.1: Example of a Pareto curve 

 

An example of weak and strict Pareto optima is shown in 

Fig. 3.2: points p1 and p5 are weak Pareto optima; points p2, 
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p3 and p4 are strict Pareto optima. 

 
Fig. 3.2 Example of weak and strict Pareto optima 

 

4. Techniques to solve MOOP 
 

Pareto curves cannot be computed efficiently in many cases. 

Even if it is theoretically possible to find all these points 

exactly, they are often of exponential size; a straightforward 

reduction from the knapsack problem shows that they are 

hard to compute. Thus, approximation methods for them are 

frequently used. However, approximation does not  represent a 

secondary choice for the decision maker. Indeed, there are 

many real-life problems for which it is quite hard for the 

decision maker to have all the information to correctly 

and/or completely formulate them.  

 

Approximating methods can have different goals: 

representing the solution set when the latter is numerically 

available (for convex multi-objective problems).  

Approximating the solution set when some but not all the 

Pareto curve is numerically available, approximating the 

solution set when the whole efficient set is not numerically 

available (for discrete multi-objective problems). 

 

There are several techniques to solve multi-objective 

optimization problem: 

 The Scalarization Technique 

 ε − constraints Method 

 Goal Programming 

 Multi-Level Programming 

 The Norm-Ideal Point Method 

 The Membership-Function Method. 

 

Here, we discuss about the method of Norm-Ideal point and 

Membership function. 

  

4.1 The Norm-Ideal Point Method: 

 

For the convex MOPP, firstly give ideal value 𝑓𝑖  for every 

objective 

function  𝑓𝑖 𝑥 , which satisfies  𝑓𝑖 ≤  min𝑥∈𝑋 𝑓𝑖 𝑥 , 𝑖 =
1, 2, …, 𝑚,   𝑓=(𝑓1, 𝑓2, …, 𝑓𝑚) is called Ideal point, after 

then introduce the norm ||.||, finally get the feasible solution 

which is having the nearest distance with the given ideal 

point 𝑓  in the norm. 

Use the absolute value norm to structure the corresponding 

single objective programming (𝑆𝑓 ): 

min
𝑥∈𝑋

 𝑤𝑖 |𝑓𝑖 𝑥 − 𝑓𝑖 

𝑚

𝑖=1

|  𝑤𝑕𝑒𝑟𝑒 𝑤 =  𝑤1 , 𝑤2 , . . , 𝑤𝑚  𝑇

∈  𝑅+
𝑚 \{0} 

Because 𝑓𝑖 ≤ min𝑥∈𝑋 𝑓𝑖 𝑥 , 𝑖 = 1, 2, . . , 𝑚;  (𝑆𝑓 ) can be 

simplified to min𝑥∈𝑋  𝑤𝑖(𝑓𝑖 𝑥 − 𝑓𝑖 
𝑚
𝑖=1 ). 

 

For the given ideal point 𝑓 and weights  𝑤 ∈  𝑅+
𝑚 \{0}, the 

optimal solution of 𝑆𝑓  is weakly Pareto optimal solution 

[11]. 

There states a theorem that: If  x
*
  X  is  weakly M-Pareto 

optimal solution of convex MOPP then  there exist 𝑤 ∈
 𝑅+

𝑚 \{0} such that x
*
  is the optimal solution of the 

corresponding single objective programming problem. 

 

Attention should be paid that Pareto optimal solution must 

be weakly Pareto optimal solution, which implies that if all 

weakly Pareto optimal solutions can be obtained, then all 

Pareto optimal solutions can be obtained. This also shows 

that theoretically all Pareto optimal solutions can be 

obtained through changing weights. 

 

4.2 Membership Function Method: 

 

Firstly structure membership function 𝛼𝑖  (𝑓𝑖  (x))  for every 

objective function 𝑓𝑖(𝑥), then use 𝛼𝑖  (𝑓𝑖  (x)) as the new 

objective functions to structure the new multi objective 

programming problem and then turn the new multi objective 

programming problem to single objective programming 

problem through some appropriate methods, finally solve the 

single objective programming problem to get the optimal 

solution, which is also the M-Pareto optimal solution of the 

original multi objective programming problem. 

 

Now, Structure the membership function for every objective 

function as follows: 

𝛼𝑖 𝑓𝑖 𝑥  =
𝑓𝑖 𝑥 − 𝑓𝑖

1

𝑓𝑖
∗ − 𝑓𝑖

1 ,   𝑖 = 1, 2, …𝑚;   𝑓𝑖
∗

= min
𝑥∈𝑋

𝑓𝑖 𝑥 , 𝑓𝑖
1 = max

𝑥∈𝑋
𝑓𝑖 𝑥  

Without loss of generality 𝑓𝑖
∗ < 𝑓𝑖

1, 𝑖 = 1, 2, . . , 𝑚 

 

There states two necessary theorems: 

 

Theorem 1: x
*
 is M-Pareto optimal solution of problem 

convex MOPP, if and only if x
*
 is Pareto optimal solution of 

problem convex MOPP. 

 

Theorem 2: If x
*
 is weakly M-Pareto optimal solution of 

problem convex MOPP, then there exists w  R
m
 \ 0 such 

that x
*
 is the optimal solution of the corresponding problem 

𝑆𝛼 . 

 

The membership function of objective function is set by 

using simple linear function. According to the properties of 

the composition of convex function, if the membership 

function of fi (x) is non increasing and concave about 𝑓𝑖(𝑥), 

then the above calculation still holds. 
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5. Example 
 

Consider the following Multi Objective Quadratic 

Programming problem with linear constraints:  

𝑀𝑎𝑥  𝑍1 = 4𝑥1 + 2𝑥2 − 𝑥1
2 − 𝑥2

2 + 5 

𝑀𝑎𝑥  𝑍2 = 2𝑥1 + 𝑥2 − 𝑥1
2 

𝑀𝑖𝑛  𝑍3 = 6 − 6𝑥1 + 2𝑥1
2 − 2𝑥1𝑥2 + 2𝑥2

2 

𝑀𝑖𝑛  𝑍1 = 2𝑥1 + 3𝑥2 − 2𝑥1
2 

𝑠/𝑡                                  𝑥1 + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

𝑥1 , 𝑥2 ≥ 0 

Convert the system into convex MOQPP: 

𝑀𝑖𝑛  𝑍1 = −4𝑥1 − 2𝑥2 + 𝑥1
2 + 𝑥2

2 − 5 

𝑀𝑖𝑛  𝑍2 = −2𝑥1 − 𝑥2 + 𝑥1
2 

𝑀𝑖𝑛  𝑍3 = 6 − 6𝑥1 + 2𝑥1
2 − 2𝑥1𝑥2 + 2𝑥2

2                                      

(5.1) 

𝑀𝑖𝑛  𝑍4 = 2𝑥1 + 3𝑥2 − 2𝑥1
2 

𝑠/𝑡           𝑥1 + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

𝑥1 , 𝑥2 ≥ 0 

Now we will find Pareto optimal solution of this system by 

using Norm-Ideal Point method and Membership Function 

Method: 

 

Using Norm-Ideal Point method 

For convenience, the feasible region of the given problem is: 

 

 
Figure 5.1: The graph of feasible region 

 

The feasible region is 0ABCD. The vertices of feasible 

region formed by constraints are 𝟎 𝟎, 𝟎 , 𝑨 𝟐. 𝟔, 𝟎 ,
𝑩 𝟐, 𝟏 , 𝑪 𝟏, 𝟐 , 𝑫(𝟎, 𝟐. 𝟐𝟓) and the function values of the 

objective functions in vertices are given in the following 

table I: 

 

Table I: function values at vertices 
 𝑍1 𝑍2 𝑍3 𝑍4 

0 0, 0  -5 0 6 0 

𝐴 2.6, 0  -8.64 1.56 3.92 -8.32 

𝐵 2, 1  -10 -1 0 -1 

𝐶 1, 2  -8 -3 6 6 

𝐷(0, 2.25) -4.4 -2.25 16.12 6.75 

 

It can easily say that, 𝑀𝑖𝑛   𝑍1 = −10, 𝑀𝑖𝑛   𝑍2 =
−3, 𝑀𝑖𝑛   𝑍3 = 0, 𝑀𝑖𝑛   𝑍4 = −8.32. 

All Pareto optimal solutions of problem (5.1) is : 𝐴 2.6, 0 ,
𝐵 2, 1 , 𝐶 1, 2  

 

The Ideal point method is used to solve the given MOQPP 

and illustrate that there exists weights 𝒘 such that each 

Pareto optimal solution of (5.1) is the optimal solution of 

corresponding single objective function. In the Ideal point 

method, we take the Ideal point  𝑝 = (𝑝1   , 𝑝2   , 𝑝3   , 𝑝4   ) where 

                        𝑝1   = min
𝑥∈𝑋

 −4𝑥1 − 2𝑥2 + 𝑥1
2 + 𝑥2

2 − 5 =

−10,               𝑝2    = min
𝑥∈𝑋

 −2𝑥1 − 𝑥2 + 𝑥1
2 = −3,  

                  𝑝3   = min
𝑥∈𝑋

 6 − 6𝑥1 + 2𝑥1
2 − 2𝑥1𝑥2 + 2𝑥2

2 

= 0,                    𝑝4   
= min

𝑥∈𝑋
 2𝑥1 + 3𝑥2 − 2𝑥1

2 = −8.32 

So the MOQPP (5.1) can be turned into the following single 

objective programming problem: 

𝑀𝑖𝑛    𝑤1 𝑧1 + 10 + 𝑤2 𝑧2 + 3 + 𝑤3 𝑧3 − 0 + 𝑤4[𝑧4

+ 8.32] 
⇒     𝑀𝑖𝑛    𝑤1 −4𝑥1 − 2𝑥2 + 𝑥1

2 + 𝑥2
2 − 5 + 10 +

𝑤2 −2𝑥1 − 𝑥2 + 𝑥1
2 + 3 + 𝑤3 6 − 6𝑥1 + 2𝑥1

2 − 2𝑥1𝑥2 +
                              2𝑥22−0+𝑤4[2𝑥1+3𝑥2−2𝑥12+8.32] 

s/t                                                    𝑥1 + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

                                                                                                𝑥1 , 𝑥2 ≥
0                                                                 (5.2) 

The objective function can be written as: 

𝑥1 −4𝑤1 − 2𝑤2 − 6𝑤3 + 2𝑤4 + 𝑥2 −2𝑤1 − 𝑤2 + 3𝑤4 
+ 𝑥1

2 𝑤1 + 𝑤2 + 2𝑤3 − 2𝑤4 
+ 𝑥2

2 𝑤1 + 2𝑤3 − 2𝑤3𝑥1𝑥2 + [5𝑤1

+ 3𝑤2 + 6𝑤3 + 8.32𝑤4] 
In order to take Minimum in point   𝑩 𝟐, 𝟏  according to the 

characteristic of linear programming, the slope of objective 

function only need to satisfy  

                          

−4𝑤1 − 2𝑤2 − 6𝑤3 + 2𝑤4 > 0  & 
4𝑤1+2𝑤2+6𝑤3−2𝑤4

−2𝑤1−𝑤2+3𝑤4
< −1                                              

(5.3) 

      Or                                 −4𝑤1 − 2𝑤2 − 6𝑤3 + 2𝑤4 >

0  & 
4𝑤1+2𝑤2+6𝑤3−2𝑤4

−2𝑤1−𝑤2+3𝑤4
< −3/2                           (5.4) 

Taking, 𝑤1 =
1

4
, 𝑤2 =

1

4
, 𝑤3 =

1

4
, 𝑤4 =

1

4
 

The multi objective programming problem (5.2) can be 

converted into the following single objective programming 

problem: 

𝑀𝑖𝑛 −
5

2
𝑥1 +

1

2
𝑥1

2 +
3

4
𝑥2

2 −
1

2
𝑥1𝑥2 +

279

50
 

   𝑠/𝑡                               𝑥1 + 4𝑥2 ≤ 9 
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𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

   𝑥1 , 𝑥2 ≥ 0                                 (5.5) 

After solving we get, 𝑥1 = 2.29  &   𝑥2 = 0.9 

 

The optimal solution of single objective programming 

problem (5.5) is (2.29, 0.9) which is also the Pareto optimal 

solution (approximately) of problem (5.2). So there exist 

weights  𝑤1 =
1

4
, 𝑤2 =

1

4
, 𝑤3 =

1

4
, 𝑤4 =

1

4
  such that 𝐵(2, 1) 

is the optimal solution of the corresponding single objection 

programming problem (5.5). 

  

In order to take Minimum in point   𝑪(𝟏, 𝟐) according to the 

characteristic of linear programming, the slope of objective 

function only need to satisfy  

−4𝑤1 − 2𝑤2 − 6𝑤3 + 2𝑤4 > 0  & 
4𝑤1+2𝑤2+6𝑤3−2𝑤4

−2𝑤1−𝑤2+3𝑤4
< −1                               

(5.6) 

Or                                 −4𝑤1 − 2𝑤2 − 6𝑤3 + 2𝑤4 >

0  & 
4𝑤1+2𝑤2+6𝑤3−2𝑤4

−2𝑤1−𝑤2+3𝑤4
< −1/4                           (5.7) 

Taking, 𝑤1 =
2

5
, 𝑤2 =

1

5
, 𝑤3 =

1

5
, 𝑤4 =

1

5
 

 

The multi objective programming problem (5.2) can be 

converted into the following single objective programming 

problem: 

𝑀𝑖𝑛 − 2.8𝑥1 − 0.4𝑥2 + 0.6𝑥1
2 + 0.8𝑥2

2 − 0.4𝑥1𝑥2 + 5.46 

𝑠/𝑡      𝑥1 + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

      𝑥1 , 𝑥2 ≥ 0                                (5.8) 

 

After solving we get, 𝑥1 = 2.23  &   𝑥2 = 0.91 

 

The optimal solution of single objective programming 

problem (5.8) is (2.23, 0.91) which is also the Pareto 

optimal solution (approximately) of problem (5.2). So there 

exist weights    𝑤1 =
2

5
, 𝑤2 =

1

5
, 𝑤3 =

1

5
, 𝑤4 =

1

5
 such that 

𝐵(2, 1) is the optimal solution of the corresponding single 

objection programming problem (5.8). 

 

So for both cases, the Pareto optimal solution is (2, 1). 

 

For all Pareto optimal solutions of multi objective 

programming problem, there exists weights such that the 

Pareto optimal solution is the optimal solution of the 

corresponding single objective programming problem. From 

our previous paper [10], the optimal solution has been 

found. 

 

Using Membership Function method: 

For convenience, the feasible region of the given problem is: 

 

 
Figure 5.2: The graph of feasible region 

 

For convenience denote that, 𝑓1 = −4𝑥1 − 2𝑥2 + 𝑥1
2 + 𝑥2

2 −
5,   𝑓2 = −2𝑥1 − 𝑥2 + 𝑥1

2 

 𝑓3 = 6 − 6𝑥1 + 2𝑥1
2 − 2𝑥1𝑥2 + 2𝑥2

2,    𝑓4

= 2𝑥1 + 3𝑥2 − 2𝑥1
2 

The feasible region is 0ABCD. The vertices of feasible 

region formed by constraints are 𝟎 𝟎, 𝟎 , 𝑨 𝟐. 𝟔, 𝟎 ,
𝑩 𝟐, 𝟏 , 𝑪 𝟏, 𝟐 , 𝑫(𝟎, 𝟐. 𝟐𝟓) and the function values of the 

objective functions in vertices are given in the following 

table II: 

 

Table II: Function values at vertices 
 𝑓1 𝑓2 𝑓3 𝑓4 

0 0, 0  -5 0 6 0 

𝐴 2.6, 0  -8.64 1.56 3.92 -8.32 

𝐵 2, 1  -10 -1 0 -1 

𝐶 1, 2  -8 -3 6 6 

𝐷(0, 2.25) -4.4 -2.25 16.12 6.75 

Due to the particularity of linear programming, it is obvious 

that,  

𝑀𝑖𝑛 𝑓1 =  −10,      𝑀𝑎𝑥  𝑓1 = −4.4 

𝑀𝑖𝑛 𝑓2 =  −3,      𝑀𝑎𝑥  𝑓2 = 1.56 

𝑀𝑖𝑛 𝑓3 =  0,      𝑀𝑎𝑥  𝑓3 = 16.12 

𝑀𝑖𝑛 𝑓4 =  −8.32,      𝑀𝑎𝑥  𝑓4 = 6.75 

For each objective function, membership function can be 

structured as follows: 

𝛼1 𝑓1 =
−𝑓1 − 4.4

5.6
, 𝛼2 𝑓2 =

−𝑓2 + 1.56

4.56
, 𝛼3 𝑓3 

=
−𝑓3 + 16.12

16.12
, 𝛼4 𝑓4 =

−𝑓4 + 6.75

15.07
  

The membership function values in vertices are given in the 

following table III: 

 

Table III: Membership function values at vertices 
 𝛼1(𝑓1)          𝛼2(𝑓2) 𝛼3(𝑓3) 𝛼4(𝑓4) 

0 0, 0  3/28 13/38 253/403 675/1507 

𝐴 2.6, 0  53/70 0 305/403 1 

𝐵 2, 1  1 32/57 1 775/1507 

𝐶 1, 2  9/14 1 253/403 75/1507 

𝐷(0, 2.25) 0 127/152 0 0 
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From the definition of M-Pareto optimal solution, The M-

Pareto optimal solution of problem (5.1) are:  

𝟎 𝟎, 𝟎 , 𝑨 𝟐. 𝟔, 𝟎 , 𝑩 𝟐, 𝟏 , 𝑪 𝟏, 𝟐 , 𝑫 𝟎, 𝟐. 𝟐𝟓 . 
 

Next, membership function method is used to solve the multi 

objective programming problem (5.1) and illustrates that 

there exist weights 𝒘 such that the M-Pareto optimal 

solution of problem (5.1) is the optimal solution of the 

corresponding single objective programming problem. 

 

According to model  (𝑆𝛼 ), the multi objective programming 

problem (5.1) is converted to the single objective 

programming problem: 

𝑀𝑎𝑥       𝑤1𝛼1(𝑓1) + 𝑤2𝛼2(𝑓2) + 𝑤3𝛼3(𝑓3) + 𝑤4𝛼4(𝑓4) 

                          𝑠/𝑡      𝑥1 + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

                                𝑥1 , 𝑥2 ≥ 0                                    (5.9)          

Due to the way of structuring membership function of 

objective functions 𝑓1, 𝑓2 𝑎𝑛𝑑  𝑓3, the above method can be 

written as: 

      𝑀𝑎𝑥    𝑤1  
−𝑓1−4.4

5.6
 + 𝑤2  

−𝑓2+1.56

4.56
 + 𝑤3  

−𝑓3+16.12

16.12
 +

𝑤4(
−𝑓4+6.75

15.07
) 

                            𝑠/𝑡          𝑥1  + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

       𝑥1 , 𝑥2 ≥ 0                               (5.10) 

This can be written as,  

 

 

 𝑀𝑎𝑥           𝑥1  
4

5.6
𝑤1 +

2

4.5
𝑤2 +

6

16.12
𝑤3 −

2

15.07
𝑤4 +

𝑥2  
2

5.6
𝑤1 +

1

4.56
𝑤2 −

3

15.07
𝑤4 + 𝑥1

2  −
1

5.6
𝑤1 −

1

4.56
𝑤2 −

216.12𝑤3+215.07𝑤4+𝑥22 
−15.6𝑤1−216.12𝑤3+216.12𝑥1𝑥2𝑤3+.65.6𝑤1+1.564.5
𝑤2+𝑤3+6.7515.07𝑤4 

                  𝑠/𝑡             𝑥1  + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

           𝑥1 , 𝑥2 ≥ 0                                (5.11)                              

In order to take maximum in point 𝐵 2, 1 , the slope of 

objective function only need to satisfy  

                 
4

5.6
𝑤1 +

2

4.5
𝑤2 +

6

16.12
𝑤3 −

2

15.07
𝑤4 > 0    𝑎𝑛𝑑            

−
4

5.6
𝑤1+

2

4.5
𝑤2+

6

16.12
𝑤3−

2

15.07
𝑤4

2

5.6
𝑤1+

1

4.56
𝑤2−

3

15.07
𝑤4

< −1      

Or              
4

5.6
𝑤1 +

2

4.5
𝑤2 +

6

16.12
𝑤3 −

2

15.07
𝑤4 > 0    𝑎𝑛𝑑            

−
4

5.6
𝑤1+

2

4.5
𝑤2+

6

16.12
𝑤3−

2

15.07
𝑤4

2

5.6
𝑤1+

1

4.56
𝑤2−

3

15.07
𝑤4

< −
3

2
      

If we take,  𝑤1 =
1

4
, 𝑤2 =

1

2
, 𝑤3 =

1

6
, 𝑤4 = 2/7, the multi 

objective programming problem (5.1) can be converted into 

single objective programming problem (5.11) and putting 

values we get,  

𝑀𝑎𝑥                 0.422 𝑥1 + 0.142  𝑥2 − 0.137 𝑥1
2 − 0.065 𝑥2

2

+ 0.02 𝑥1𝑥2 + 0.492 

 

                                    𝑠/𝑡              𝑥1 + 4𝑥2 ≤ 9 

𝑥1 + 𝑥2 ≤ 3 

3𝑥1 + 2𝑥2 ≤ 8 

          𝑥1, 𝑥2 ≥ 0                                (5.12) 

After solving we get, 𝑥1 = 1.9  𝑎𝑛𝑑  𝑥2 = 1. 
 

The optimal solution of (5.12) is 𝑥1 = 1.9 ≅ 2  𝑎𝑛𝑑  𝑥2 = 1, 

which is also the M-Pareto optimal solution of problem 

(5.1). So there exist weights       𝑤1 =
1

4
, 𝑤2 =

1

2
, 𝑤3 =

1

6
, 𝑤4 = 2/7, such that 𝐵 2, 1   is the optimal solution of the 

corresponding single objective programming problem 

(5.12). Similarly, we can show that for point  𝐶 1, 2 . 

 

Therefore, for all M-Pareto optimal solution of multi 

objective programming problem (5.1), there exist weights, 
such that  M-Pareto optimal solution is the optimal solution 

of the corresponding single objective programming problem. 

 

6. Discussion 
 

In this paper, an attempt is made to build a theoretical 

framework for MOQPP by defining the solution concept of 

Pareto optimality. We carried out two methods to solve a 

multi objective optimization problem and found 

approximately same results. MOQPP is given to illustrate 

that for any Pareto optimal solution there exist weights such 

that Pareto optimal solution is the optimal solution of the 

corresponding single objective programming problem. Since 

weights are not unique, all Pareto optimal solution and M- 

Pareto optimal solution can be obtained through taking out 

different weights. 

 

7. Conclusion 
 

This paper performed structural analysis of Pareto optimal 

solution and M- Pareto optimal solution for convex multi 

objective quadratic programming problem. Generally, all 

Pareto optimal solution and M- Pareto optimal solution 

cannot be obtained through changing weights except convex 

multi objective optimization problem. Two methods 

discussed here are very effective to obtain Pareto optimal 

solution for convex MOQPP. These methods not only have 

important theoretical remarks but also have a lot of practical 

advantages. 
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